某船開始看見燈塔在南偏東30°方向,后來船沿南偏東60°的方向航行45km后,看見燈塔在正西方向,則這時(shí)船與燈塔的距離是
15
3
km
15
3
km
分析:根據(jù)題意畫出圖形,如圖所示,求出∠CAB與∠ACB的度數(shù),在三角形ABC中,利用正弦定理列出關(guān)系式,將各自的值代入即可求出BC的長(zhǎng).
解答:解:根據(jù)題意畫出圖形,如圖所示,
可得∠DAB=60°,∠DAC=30°,AB=45km,
∴∠CAB=30°,∠ACB=120°,
在△ABC中,利用正弦定理得:
AB
sinC
=
BC
sin∠CAB
,
45
sin120°
=
BC
sin30°
,
∴BC=
45sin30°
sin120°
=
45×
1
2
3
2
=15
3
(km),
則這時(shí)船與燈塔的距離是15
3
km.
故答案為:15
3
km
點(diǎn)評(píng):此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某船開始看見燈塔在南30°東方向,后來船沿南60°東的方向航行45n mile后,看見燈塔在正西方向,則這時(shí)船與燈塔的距離是(  )
A、15nmile
B、30nmile
C、15
3
nmile
D、15
2
nmile

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某船開始看見燈塔在南偏東30°方向,后來船沿南偏東60°的方向航行45海里后,看見燈塔在正西方向,則這船與燈塔的距離是( 。
A、15海里
B、30海里
C、15
3
海里
D、15
2
海里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某船開始看見燈塔在南偏東30°方向,后來船沿南偏東60°的方向航行45km后,看見燈塔在正西方向,則這時(shí)船與燈塔的距離是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某船開始看見燈塔在南偏東30°方向,后來船沿南偏東60°的方向航行15km后,看見燈塔在正西方向,則這時(shí)船與燈塔的距離是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案