精英家教網 > 高中數學 > 題目詳情
設f(x)=
1-x    x≤1
log81x ,x>1
,則滿足f(x)=
1
4
的x的值為
 
分析:當x≤1時,列出不等式求出x;當x>1列出不等式求出x,不等式的解是兩段的并集.
解答:解:當x≤1時1-x=
1
4
解得x=
3
4

當x>1時,log81x=
1
4
即x=81
1
4
=3
故答案為3或
3
4
點評:本題考查解決分段函數問題要分段處理,最后將各段的結果并起來.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

設f(x)是定義在R上的偶函數,且f(2+x)=f(2-x),當x∈[-2,0)時,f(x)=數學公式-1,若在區(qū)間(-2,6)內的關于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4個不同的實數根,則實數a的取值范圍是


  1. A.
    數學公式,1)
  2. B.
    (1,4)
  3. C.
    (1,8)
  4. D.
    (8,+∞)

查看答案和解析>>

科目:高中數學 來源:2012-2013學年河北省石家莊一中高三(上)暑期第二次考試數學試卷(理科)(解析版) 題型:選擇題

設f(x)是定義在R上的偶函數,且f(2+x)=f(2-x),當x∈[-2,0)時,f(x)=-1,若在區(qū)間(-2,6)內的關于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4個不同的實數根,則實數a的取值范圍是( )
A.(,1)
B.(1,4)
C.(1,8)
D.(8,+∞)

查看答案和解析>>

科目:高中數學 來源:2012-2013學河北省石家莊一中高三(上)第二次考試數學試卷(文科)(解析版) 題型:選擇題

設f(x)是定義在R上的偶函數,且f(2+x)=f(2-x),當x∈[-2,0)時,f(x)=-1,若在區(qū)間(-2,6)內的關于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4個不同的實數根,則實數a的取值范圍是( )
A.(,1)
B.(1,4)
C.(1,8)
D.(8,+∞)

查看答案和解析>>

科目:高中數學 來源:2012-2013學河北省石家莊一中高三暑期第二次考試數學試卷(理科)(解析版) 題型:選擇題

設f(x)是定義在R上的偶函數,且f(2+x)=f(2-x),當x∈[-2,0)時,f(x)=-1,若在區(qū)間(-2,6)內的關于x的方程f(x)-logga(x+2)=0(a>0且a≠1)恰有4個不同的實數根,則實數a的取值范圍是( )
A.(,1)
B.(1,4)
C.(1,8)
D.(8,+∞)

查看答案和解析>>

同步練習冊答案