如圖,已知⊥平面,∥,是正三角形,,且是的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面BCE⊥平面.
(1)取CE中點P,連結(jié)FP、BP,∵F為CD的中點,借助于中位線定理得到FP∥DE,再結(jié)合平行的傳遞性得到證明。
(2)對于面面垂直的證明,關(guān)鍵是要根據(jù)線面垂直的判定定理以及面面垂直的判定定理得到。
【解析】
試題分析:解:(Ⅰ)取CE中點P,連結(jié)FP、BP,
∵F為CD的中點,
∴FP∥DE,且FP=
又AB∥DE,且AB= ∴AB∥FP,且AB=FP,
∴ABPF為平行四邊形,∴AF∥BP. 4分
又∵AF平面BCE,BP平面BCE,
∴AF∥平面BCE …………7分
(Ⅱ)∵△ACD為正三角形,∴AF⊥CD
∵AB⊥平面ACD,DE//AB
∴DE⊥平面ACD 又AF平面ACD
∴DE⊥AF
又AF⊥CD,CD∩DE=D
∴AF⊥平面CDE 12分
又BP∥AF
∴BP⊥平面CDE又∵BP平面BCE
∴平面BCE⊥平面CDE 14分
考點:線面垂直和面面垂直
點評:主要是考查了空間中線面和面面垂直的判定定理的運用,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:
AB |
BC |
DE |
EF |
h′ |
h |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com