8.如圖,棱長(zhǎng)為$\sqrt{2}$的正四面體ABCD的三個(gè)頂點(diǎn)A,B,C分別在空間直角坐標(biāo)系的坐標(biāo)軸Ox,Oy,Oz上,則定點(diǎn)D的坐標(biāo)為(  )
A.(1,1,1)B.$({\sqrt{2},\sqrt{2},\sqrt{2}})$C.$({\sqrt{3},\sqrt{3},\sqrt{3}})$D.(2,2,2)

分析 將正四面體ABCD放入正方體中,畫出圖形結(jié)合圖形,即可求出點(diǎn)D的坐標(biāo).

解答 解:
將正四面體ABCD放入正方體中,如圖所示,
由已知AB=BC=AC=$\sqrt{2}$,
所以O(shè)A=OB=OC=1,
所以點(diǎn)D的坐標(biāo)為(1,1,1).
故選:A.

點(diǎn)評(píng) 本題考查了空間位置關(guān)系的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,正方形ABP7P5的邊長(zhǎng)為2,P1,P4,P6,P2是四邊的中點(diǎn),AB是正方形的其中一條邊,P1P6與P2P4相交于點(diǎn)P3,則$\overrightarrow{AB}$•$\overrightarrow{A{P}_{i}}$(i=1,2,…,7)的不同值的個(gè)數(shù)為(  )
A.7B.5C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1+x)5(1-$\frac{1}{x}$)5的展開式中的x項(xiàng)的系數(shù)等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知f(x)=lnx-ax+1,其中a為常實(shí)數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=1時(shí),求證:f(x)≤0;
(3)當(dāng)n≥2,且n∈N*時(shí),求證:$\frac{ln2}{2}+\frac{ln3}{{2}^{2}}+\frac{ln4}{{2}^{3}}+…+\frac{lnn}{{2}^{n-1}}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某中學(xué)教務(wù)處采用系統(tǒng)抽樣方法,從學(xué)校高一年級(jí)全體1000名學(xué)生中抽50名學(xué)生做學(xué)習(xí)狀況問卷調(diào)查.現(xiàn)將1000名學(xué)生從1到1000進(jìn)行編號(hào).在第一組中隨機(jī)抽取一個(gè)號(hào),如果抽到的是17號(hào),則第8組中應(yīng)取的號(hào)碼是( 。
A.177B.417C.157D.367

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列各式中S的值不可以用算法求解的是( 。
A.S=1+2+3+4B.S=1+2+3+4+…
C.S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{100}$D.S=12+22+32+…+1002

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)F1,F(xiàn)2分別是橢圓$\frac{x^2}{m}+\frac{y^2}{3}=1$的兩個(gè)焦點(diǎn),P是第一象限內(nèi)該橢圓上一點(diǎn),且$\frac{{sin∠P{F_1}{F_2}+sin∠P{F_2}{F_1}}}{{sin∠{F_1}P{F_2}}}=2$,則正數(shù)m的值為4或$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個(gè)蜂巢里有1只蜜蜂.第1天,它飛出去找回了2個(gè)伙伴;第2天,3只蜜蜂飛出去,各自找回了2個(gè)伙伴…如果這個(gè)找伙伴的過程繼續(xù)下去,第5天所有的蜜蜂都?xì)w巢后,蜂巢中一共有243只蜜蜂.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,且F2為拋物線C2:y2=2px的焦點(diǎn),C2的準(zhǔn)線l被C1和圓x2+y2=a2截得的弦長(zhǎng)分別為2$\sqrt{2}$和4,求C1和C2的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案