已知函數(shù)f(x)=3x3+2x.

(1)求f(2),f(-2),f(2)+f(-2)的值;

(2)求f(a),f(-a),f(a)+f(-a)的值;

(3)你從(2)中發(fā)現(xiàn)了什么結(jié)論?

答案:
解析:

  解:(1)f(2)=3×23+2×2=28,f(-2)=3×(-2)3+2×(-2)=-28,

  f(2)+f(-2)=28-28=0;

  (2)f(a)=3a3+2a,f(-a)=3(-a)3+2(-a)=-(3a3+2a),

  f(a)+f(-a)=0;

  (3)由(2)知,因?yàn)閍可取任意數(shù),故可得到f(x)+f(x)=0.

  評注:上題結(jié)論f(x)+f(-x)=0,即f(-x)=-f(x)是函數(shù)的一務(wù)重要性質(zhì),我們在后續(xù)知識中要加以重點(diǎn)研究,請同學(xué)們留意.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆浙江省臨海市白云高級中學(xué)高三第三次模擬理科數(shù)學(xué)試卷(帶解析) 題型:解答題

已知函數(shù)f (x)=3 sin2 ax+sin ax cos ax+2 cos2 ax的周期為π,其中a>0.
(Ⅰ) 求a的值;
(Ⅱ) 求f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省臨海市高三第三次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f (x)=3 sin2 ax+sin ax cos ax+2 cos2 ax的周期為π,其中a>0.

(Ⅰ) 求a的值;

(Ⅱ) 求f (x)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=3-2log2x,g(x)=log2x.

(1)如果x∈[1,4],求函數(shù)h(x)=(f(x)+1)g(x)的值域;

(2)求函數(shù)M(x)=的最大值;

(3)如果不等式f(x2)f()>kg(x)對x∈[2,4]有解,求實(shí)數(shù)k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三高考模擬測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f (x)=3 sin2 ax+sin ax cos ax+2 cos2 ax的周期為π,其中a>0.

(Ⅰ) 求a的值;

(Ⅱ) 求f (x)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修1單調(diào)性與最大(。┲稻毩(xí)卷(二)(解析版) 題型:選擇題

已知函數(shù)f(x)=3-2|x|,g(x)=x2-2x,構(gòu)造函數(shù)F(x),定義如下:當(dāng)f(x)≥g(x)時(shí),F(xiàn)(x)=g(x);當(dāng)f(x)<g(x)時(shí),F(xiàn)(x)=f(x),那么F(x)(  )

A.有最大值3,最小值-1

B.有最大值3,無最小值

C.有最大值7-,無最小值

D.無最大值,也無最小值

 

查看答案和解析>>

同步練習(xí)冊答案