已知關(guān)于x的方程
|x2-1|
x-1
+2-
k
x
=0有兩個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是
 
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:方程即k=
x(x+3),x>1或x≤-1
x(1-x),-1<x<1且x≠0
.結(jié)合題意可得直線y=k和函數(shù)f(x)=
x(x+3),x>1或x≤-1
x(1-x),-1<x<1且x≠0
 的圖象有2個(gè)交點(diǎn),數(shù)形結(jié)合可得結(jié)論.
解答: 解:由關(guān)于x的方程
|x2-1|
x-1
+2-
k
x
=0有兩個(gè)不同的實(shí)數(shù)解,可得x≠1,且 x≠0,
當(dāng)x>1時(shí),方程即 k=x(x+3),
當(dāng)-1<x<1時(shí),且x≠0時(shí),方程即 k=x(1-x),
當(dāng)x≤-1時(shí),方程即 k=x(x+3).
綜上可得,當(dāng)x>1時(shí)或x≤-1時(shí),方程即 k=x(x+3);當(dāng)-1<x<1時(shí),且x≠0時(shí),方程即 k=x(1-x).
方程即k=
x(x+3),x>1或x≤-1
x(1-x),-1<x<1且x≠0

結(jié)合題意可得直線y=k和函數(shù)f(x)=
x(x+3),x>1或x≤-1
x(1-x),-1<x<1且x≠0
 的圖象有2個(gè)交點(diǎn),
如圖所示:當(dāng)x=
1
2
,f(x)=
1
4
;當(dāng)x=-
3
2
時(shí),f(x)=-
9
4
,當(dāng)x>1時(shí),f(x)>4.
故滿足條件的k的范圍為{k|k>4,或 k=
1
4
,或-
9
4
<k≤0},
故答案為:{k|k>4,或 k=
1
4
,或-
9
4
<k≤0}.
點(diǎn)評(píng):本題主要考查方程的根的存在性及個(gè)數(shù)判斷,體現(xiàn)了化歸與轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=1,公差d=2,Sk+1-Sk=9,k∈N*,則k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的焦點(diǎn)分別為(0,-2),(0,2),且經(jīng)過點(diǎn)(4,3
2
),求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列四個(gè)命題:其中為真命題的是
 
 (填上正確命題的序號(hào))
①“x=
π
6
”是“sinx=
1
2
”的充分不必要條件;
②若“p∨q”為真,則“p∧q”為真;
③已知x∈R,則“x>1”是“x>2”的充分不必要條件
④“若am2<bm2,則a<b”的逆命題為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A′B′C′中,底面ABC是邊長(zhǎng)為2的正三角形,D′是棱A′C′的中點(diǎn),且AA′=2
2

(Ⅰ)試在棱CC′上確定一點(diǎn)M,使A′M⊥平面AB′D′;
(Ⅱ)當(dāng)點(diǎn)M在棱CC′中點(diǎn)時(shí),求直線AB′與平面A′BM所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
p
=(1+
3
cos2x,1),
q
=(-1,sin2x+n)(x∈R,n∈N*),且f(x)=
p
q

(Ⅰ)在銳角△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且c=3,△ABC的面積為3
3
,當(dāng)n=1時(shí),f(A)=
3
,求a的值.
(Ⅱ)若x∈[0,
π
2
]
時(shí),f(x)的最大值為an(an為數(shù)列{an}的通項(xiàng)公式),設(shè)數(shù)列{bn}滿足:b1=
1
2
,且n≥2時(shí)bn=
1
an-1an
,記數(shù)列{bn}的前n項(xiàng)和Tn,若對(duì)?n∈N*,Tn≤k(n+4),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若PO⊥平面ABC,O為垂足,∠ABC=90°,∠BAC=30°,BC=5,PA=PB=PC=10,則PO的長(zhǎng)等于(  )
A、5
B、5
3
C、10
D、10
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從天空降落到地面上的雨水,未經(jīng)蒸發(fā)、滲透、流失而在平面上積聚的水層深度,我們稱為降水量(以毫米為單位),它可以直觀地表示降雨的多少,目前,測(cè)定降雨量常用的儀器包括雨量筒和量杯,雨量筒是內(nèi)徑為20厘米的圓柱形容器,量杯是內(nèi)徑為4厘米的圓柱形容器,為了測(cè)量某次降雨量的大小,在雨前將雨量筒置于室外承接雨水,雨后將水倒入量杯中,測(cè)得杯中的垂直高度 為10厘米,則這次降雨量為
 
毫米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)做了五次試驗(yàn),其試驗(yàn)結(jié)果分別為-1,-2,2,4,7.
(1)求五次試驗(yàn)結(jié)果的平均數(shù)與方差;
(2)從五次試驗(yàn)結(jié)果中任取兩個(gè)不同的數(shù)分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),試求這些點(diǎn)落在區(qū)域
x≥0
y≤0
x-y-4≥0
的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案