【題目】已知函數(shù)上沒有最小值,則的取值范圍是________________

【答案】

【解析】

先求導(dǎo),利用f′(x)=0時(shí),x=0或x=,討論兩個(gè)極值點(diǎn)與(-1,1)的關(guān)系,再根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性最值的關(guān)系將極值與端點(diǎn)處函數(shù)值作比較得到a的范圍.

∵f(x)=x3﹣ax,∴f′(x)=3x2﹣2ax=x(3x-2a),當(dāng)f′(x)=0時(shí),x=0或x=,

(1)當(dāng)∈(﹣∞,﹣1]時(shí),即a時(shí),f(x)在(-1,0)單調(diào)遞減,在(0,1)單調(diào)遞增,此時(shí)x=0時(shí)f(x)取得最小值,所以舍去.

(2)當(dāng)-1<<0時(shí),f(x)在(-1,)單調(diào)遞增,在(,0)單調(diào)遞增減,在(0,1)單調(diào)遞增,由題意上沒有最小值,

則有

(3)當(dāng)a=0時(shí),f(x)=上顯然沒有最小值,故成立.

(4)當(dāng)0<<1時(shí),f(x)在(-1,)單調(diào)遞增,在(0,)單調(diào)遞增減,在(,1)單調(diào)遞增,由題意上沒有最小值,

則有

(5)當(dāng)時(shí),即a時(shí),f(x)在(-1,0)單調(diào)遞增,在(0,1)單調(diào)遞減,

此時(shí)f(x)在上沒有最小值.

綜上:a>-1.

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,,為線段上一點(diǎn),,的中點(diǎn).

1)證明:平面;

2)求點(diǎn)到平面的距離;

3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,⊥底面,,,ADDCAP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).

(1)證明:BEDC

(2)F為棱PC上一點(diǎn),滿足BFAC求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察下表:

1,2,3

4,5,6,7,8,

9,1011,12,13,14,15,

16,1718,19,20,2122,23,24

……

問:(1)此表第行的第一個(gè)數(shù)與最后一個(gè)數(shù)分別是多少?

2)此表第行的各個(gè)數(shù)之和是多少?

32019是第幾行的第幾個(gè)數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,函數(shù).

1)若,且,求的值;

2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

3)若關(guān)于的方程上有兩個(gè)不同的實(shí)數(shù)根,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓

(1)若直線過點(diǎn)且被圓截得的弦長(zhǎng)為2,求直線的方程;

(2)從圓外一點(diǎn)向圓引一條切線,切點(diǎn)為為坐標(biāo)原點(diǎn),滿足,求點(diǎn)的軌跡方程及的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線的左焦點(diǎn)作圓的切線,切點(diǎn)為,延長(zhǎng)交雙曲線右支于點(diǎn).若線段的中點(diǎn)為為坐標(biāo)原點(diǎn),則的大小關(guān)系是(

A. B.

C. D. 無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,某旅行社為吸引中學(xué)生去某基地參加夏令營(yíng),推出如下收費(fèi)標(biāo)準(zhǔn):若夏令營(yíng)人數(shù)不超過30,則每位同學(xué)需交費(fèi)用600元;若夏令營(yíng)人數(shù)超過30,則營(yíng)員每多1人,每人交費(fèi)額減少10元(即:營(yíng)員31人時(shí),每人交費(fèi)590元,營(yíng)員32人時(shí),每人交費(fèi)580元,以此類推),直到達(dá)到滿額70人為止.

1)寫出夏令營(yíng)每位同學(xué)需交費(fèi)用(單位:元)與夏令營(yíng)人數(shù)之間的函數(shù)關(guān)系式;

2)當(dāng)夏令營(yíng)人數(shù)為多少時(shí),旅行社可以獲得最大收入?最大收入是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程是,直線交拋物線于兩點(diǎn)

(1)若弦AB的中點(diǎn)為,求弦AB的直線方程;

(2)設(shè),若,求證AB過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案