求證:直徑上的圓周角是直角.
證明:如下圖所示,AB為⊙O的直徑,C為⊙O上任一點(diǎn),連結(jié)OC. 設(shè)=a,=c,則 =a+c,=a-c,且|a|=|c|. ∵·=(a+c)·(a-c)=|a|2-|c|2=0, ∴AC⊥BC,即∠ACB=90°. ∴直徑上的圓周角是直角. 點(diǎn)評:上例體現(xiàn)了用向量解平面幾何問題的“三步曲”: ①用向量來表示平面幾何中的幾何元素,將平面幾何問題轉(zhuǎn)化為向量問題; 、谕ㄟ^向量運(yùn)算,研究幾何元素之間的關(guān)系; 、郯严蛄窟\(yùn)算的結(jié)果“翻譯”成幾何關(guān)系. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計(jì)必修四數(shù)學(xué)蘇教版 蘇教版 題型:047
求證:直徑上的圓周角為直角.
已知:AC為⊙O的直徑,∠ABC是直徑AC上的圓周角,如圖所示.求證:∠ABC=90°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com