已知橢圓的短軸長(zhǎng)等于2,長(zhǎng)軸端點(diǎn)與短軸端點(diǎn)間的距離等于
5
,則此橢圓的標(biāo)準(zhǔn)方程是
x2
4
+y2=1或
y2
4
+x2=1
x2
4
+y2=1或
y2
4
+x2=1
分析:由題意可得
2b=2
a2+b2=(
5
)2
,解出a,b即可.
解答:解:由題意可得
2b=2
a2+b2=(
5
)2
,解得
b=1
a=2

故橢圓的標(biāo)準(zhǔn)方程是
x2
4
+y2=1或
y2
4
+x2=1

故答案為
x2
4
+y2=1或
y2
4
+x2=1
點(diǎn)評(píng):熟練掌握橢圓的不做飯吃及其性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧省沈陽(yáng)市高三高考領(lǐng)航考試(四)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的短軸長(zhǎng)等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)的最短距離為

(Ⅰ)求橢圓C的方程;

(Ⅱ)過(guò)點(diǎn)且斜率為的直線交于、兩點(diǎn),是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),證明:三點(diǎn)共線.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆云南省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的短軸長(zhǎng)等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)的最短距離為.(Ⅰ)求橢圓C的方程;(Ⅱ)過(guò)點(diǎn)且斜率為的直線交于兩點(diǎn),是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),證明:三點(diǎn)共線.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的短軸長(zhǎng)等于2,長(zhǎng)軸端點(diǎn)與短軸端點(diǎn)間的距離等于
5
,則此橢圓的標(biāo)準(zhǔn)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《2.1 橢圓》2013年同步練習(xí)2(解析版) 題型:填空題

已知橢圓的短軸長(zhǎng)等于2,長(zhǎng)軸端點(diǎn)與短軸端點(diǎn)間的距離等于,則此橢圓的標(biāo)準(zhǔn)方程是   

查看答案和解析>>

同步練習(xí)冊(cè)答案