15.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}\right.$,則$f(f(\frac{1}{4}))$的值是( 。
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.4D.-4

分析 利用分段函數(shù)的性質(zhì)先求出f($\frac{1}{4}$),再求出$f(f(\frac{1}{4}))$的值.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}\right.$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
$f(f(\frac{1}{4}))$=f(-2)=2-2=$\frac{1}{4}$.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分段函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)$y=3{cos^2}x-4cosx+1\;(x∈[\frac{π}{3}\;,\;\frac{2π}{3}])$的最大值是-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知數(shù)組(x1,y1),(x2,y2),…,(xn,yn)的線性回歸方程是$\hat y=bx+a$,則“x0=$\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$,且y0=$\frac{{{y_1}+{y_2}+…+{y_n}}}{n}$”是“(x0,y0)滿足方程$\hat y=bx+a$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.從數(shù)字1,2,3,4中任取兩個(gè)不同的數(shù)字構(gòu)成一個(gè)兩位數(shù),則這個(gè)數(shù)大于30的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.曲線f(x)=x3-x+2在點(diǎn)(1,f(1))處的切線方程為y=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列式子中成立的是(  )
A.log23.4>log28.5B.log0.31.8<log0.32.7
C.3.50.3>3.40D.${0.6^{\frac{6}{11}}}>{0.7^{\frac{6}{11}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若函數(shù)f(x)=|x|+$\sqrt{a-{x^2}}-\sqrt{2}$(a>0)沒(méi)有零點(diǎn),則a的取值范圍是(  )
A.$(\sqrt{2},+∞)$B.(2,+∞)C.$(0,1)∪(\sqrt{2},+∞)$D.(0,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)D為△ABC所在平面內(nèi)一點(diǎn),$\overrightarrow{BC}$=3$\overrightarrow{CD}$,則( 。
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.sinx+siny=$\frac{1}{3}$,cosx-cosy=$\frac{1}{5}$,求sin(x-y)與cos(x+y)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案