已知函數(shù)(其中常數(shù)).

(1)求函數(shù)的定義域及單調(diào)區(qū)間;

(2)若存在實(shí)數(shù),使得不等式成立,求的取值范圍.

 

 

 

 

 

 

 

 

【答案】

 (1)函數(shù)的定義域?yàn)?sub>   ………………………………………………1分

   ……………………………………………3分

,解得,由,解得

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為   ………5分

(2)由題意可知,當(dāng)且僅當(dāng),且上的最小值小于或等于時(shí),存在實(shí)數(shù),使得不等式成立       …………………………………6分

時(shí)

0

+

極小值

上的最小值為,則,得  ………9分

,即時(shí),上單調(diào)遞減,則上的最小值為,由,得(舍)     ………………………………………11分

綜上所述, ……………………………………………………………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù)(其中常數(shù)),是奇函數(shù)。

    (Ⅰ)求的表達(dá)式;

  (Ⅱ)討論的單調(diào)性,并求在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),其中常數(shù)ω>0.

(1)令ω=1,判斷函數(shù)的奇偶性,并說(shuō)明理由;

(2)令ω=2,將函數(shù)y=f(x)的圖像向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖像.對(duì)任意a∈R,求y=g(x)在區(qū)間[a,a+10π]上零點(diǎn)個(gè)數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省莆田一中高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)(其中常數(shù)a,b∈R),
(Ⅰ)當(dāng)a=1時(shí),若函數(shù)f(x)是奇函數(shù),求f(x)的極值點(diǎn);
(Ⅱ)若a≠0,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)時(shí),求函數(shù)g(x)在[0,a]上的最小值h(a),并探索:是否存在滿足條件的實(shí)數(shù)a,使得對(duì)任意的x∈R,f(x)>h(a)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市招生考試?yán)砜茢?shù)學(xué) 題型:解答題

(12分)已知函數(shù),其中常數(shù)滿足

⑴ 若,判斷函數(shù)的單調(diào)性;

⑵ 若,求時(shí)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省泰興市高三上學(xué)期第一次檢測(cè)文科數(shù)學(xué)試題 題型:解答題

(16分)已知函數(shù)(其中常數(shù)),是奇函數(shù)。

(1)求的表達(dá)式;

(2)討論的單調(diào)性,并求在區(qū)間上的最大值和最小值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案