sinα+sinβ=
1
2
,cosα+cosβ=
1
3
,則cos2
α-β
2
的值為
 
分析:先把已知等式兩邊分別平方,再兩式相加,則可運(yùn)用同角正余弦的關(guān)系及余弦的差角公式,最后由余弦的倍角公式即可求出答案.
解答:解:∵sinα+sinβ=
1
2
,cosα+cosβ=
1
3

sin2α+sin2β+2sinαsinβ=
1
4
①,
cos2α+cos2β+2cosαcosβ=
1
9
②,
①+②,得2+2(cosαcosβ+sinαsinβ)=
13
36
,
即cos(α-β)=-
59
72
,
cos2
α-β
2
=
1+cos(α-β)
2
=
13
144

故答案為
13
144
點(diǎn)評(píng):本題考查同角正余弦的關(guān)系及余弦的差角公式、倍角公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=sin(θ+
π
2
),θ∈(-π,0)
,則θ=
-
4
-
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿分10分)
在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α、β是不同的兩個(gè)銳角,則下列各式中一定不成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知α、β是不同的兩個(gè)銳角,則下列各式中一定不成立的是( 。
A.sin(α+β)+2cosαsinβ+sin(α-β)>0
B.cos(α+β)+2sinαsinβ+cos(α-β)<0
C.cos(α+β)-2sinαsinβ+cos(α-β)>0
D.sin(α+β)-2cosαsinβ+sin(α-β)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中假命題是(    )

A.存在實(shí)數(shù)α和β,使sin(α+β)=sinαcosβ-cosαsinβ

B.不存在無數(shù)多個(gè)α和β,使sin(α+β)=sinαcosβ-cosαsinβ

C.對任意實(shí)數(shù)α、β,都有cos(α-β)=cosαcosβ+sinαsinβ

D.不存在α、β,使cos(α-β)≠cosαcosβ+sinαsinβ

查看答案和解析>>

同步練習(xí)冊答案