(2010•鄭州三模)從正方體的八個頂點中任取四個點連線,在能構成的一對異面直線中,其所成的角的度數(shù)不可能是( 。
分析:根據(jù)正方體的8個頂點構成的異面直線中,先確定它們可能的大小,然后進行排除.
解答:解:從正方體的八個頂點中任取四個點連線中,在能構成的一對異面直線中,其所成的角的度數(shù)可能有以下幾種情況:
①若兩異面直線為CD和A1D1,此時兩直線所成的角為90°..
②若兩異面直線為CD和AB1,此時兩直線所成的角為45°.
③若兩異面直線為AC和DC1,此時兩直線所成的角為60°.
所以在能構成的一對異面直線中,其所成的角的度數(shù)不可能是30°.
故選A.
點評:本題主要考查異面直線所成角的大小求法,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•鄭州三模)各項都是正數(shù)的等比數(shù)列{an}的公比q≠1,且a2,
1
2
a3
,a1成等差數(shù)列,則
a3+a4
a4+a5
的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•鄭州三模)已知向量
a
=(3,4),
b
=(2,-1)
,如果向量
a
+x
b
-
b
垂直,則x的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•鄭州三模)設雙曲線
x2
3
-
y2
6
=1
的焦點為F1、F2,過F1作x軸的垂線與該雙曲線相交,其中一個交點為M,則|
MF2
|=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•鄭州三模)已知θ是三角形的一個內角,且sinθ、cosθ是關于x的方程2x2+px-1=0的兩根,則θ等于( 。

查看答案和解析>>

同步練習冊答案