13.750°化成弧度為( 。
A.$\frac{28}{3}$πradB.$\frac{25}{6}$πradC.$\frac{23}{6}$πradD.$\frac{23}{3}$πrad

分析 由180°=π,得1$°=\frac{π}{180}$,代入750°=750×$\frac{π}{180}$得答案.

解答 解:∵180°=π,∴1$°=\frac{π}{180}$,
則750°=750×$\frac{π}{180}$=$\frac{25}{6}$πrad.
故選:B.

點(diǎn)評(píng) 本題考查角度制與弧度制的互化,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
(Ⅰ)若0<a<3,當(dāng)x∈[0,1]時(shí),試確定當(dāng)|f'(x)|≤1時(shí)a,b滿(mǎn)足的條件;
(Ⅱ)若a=2時(shí),函數(shù)f(x)的圖象與直線(xiàn)y=1恰有三個(gè)不同的公共點(diǎn),試確定b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在銳角△ABC中,a,b,c分別是角A,B,C所對(duì)的邊,且$\sqrt{3}$a=2csinA.
(Ⅰ)求角C的大;
(Ⅱ)若c=$\sqrt{7}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.(1)現(xiàn)有5名男生和3名女生.若從中選5人,且要求女生只有2名,站成一排,共有多少種不同的排法?
(2)從{-3,-2,-1,0,1,2,3,4}中任選三個(gè)不同元素作為二次函數(shù)y=ax2+bx+c的系數(shù),問(wèn)能組成多少條經(jīng)過(guò)原點(diǎn)且頂點(diǎn)在第一象限或第三象限的拋物線(xiàn)?
(3)已知($\frac{1}{2}$+2x)n,若展開(kāi)式中第5項(xiàng)、第6項(xiàng)與第7項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列,求展開(kāi)式中二項(xiàng)式系數(shù)最大項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.有10塊相同巧克力,小華每天至少吃一塊,4天吃完則共有84種吃法.(用數(shù)字作答 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)、g(x)滿(mǎn)足如表格:
2x+13579
f(2x+1)1234
x1234
g(x)3579
若g[f(2x+1)]=3,則x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=2sin($\frac{π}{6}$-2x)(其中x∈[-π,0])的單調(diào)遞增區(qū)間是( 。
A.$[{-π,-\frac{5π}{6}}]$B.$[{-\frac{π}{3},0}]$C.$[{-\frac{2π}{3},-\frac{π}{6}}]$D.$[{-\frac{π}{3},-\frac{π}{6}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知$\overrightarrow a$=(5,3),$\overrightarrow b$=(4,2),則$\overrightarrow a•\overrightarrow b$=( 。
A.26B.22C.14D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(1)證明不等式$\sqrt{ab}$≤$\frac{a+b}{2}$(a>0,b>0);
(2)若|a|<1,|b|<1,求證|$\frac{a+b}{1+ab}}$|<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案