設(shè)雙曲線
x2
a2
-
y2
b2
=1
的一條漸近線與拋物線y=x2+1只有一個公共點,則雙曲線的離心率為( 。
A、
5
4
B、5
C、
5
2
D、
5
分析:由雙曲線方程求得雙曲線的一條漸近線方程,與拋物線方程聯(lián)立消去y,進而根據(jù)判別式等于0求得
b
a
,進而根據(jù)c=
a2+b2
求得
c
a
即離心率.
解答:解:雙曲線
x2
a2
-
y2
b2
=1
的一條漸近線為y=
b
a
x
,
由方程組
y=
b
a
x
y=x2+1
,消去y,
x2-
b
a
x+1=0
有唯一解,
所以△=(
b
a
)2-4=0
,
所以
b
a
=2
e=
c
a
=
a2+b2
a
=
1+(
b
a
)2=
5
,
故選D
點評:本題主要考查了雙曲線的簡單性質(zhì).離心率問題是圓錐曲線中常考的題目,解決本題的關(guān)鍵是找到a和b或a和c或b和c的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1
的離心率e=
2
3
3
,過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求雙曲線方程;
(2)直線y=kx+5(k≠0)與雙曲線交于不同的兩點C、D,且C、D兩點都在以A為圓心的同一個圓上,求k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2是離心率為
5
的雙曲線
x2
a2
-
y 2
b2
=1(a>0,b>0)
的左、右兩個焦點,若雙曲線右支上存在一點P,使(
OP
+
OF2
)•
F2P
=0
(O為坐標原點)且|PF1|=λ|PF2|則λ的值為( 。
A、2
B、
1
2
C、3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的虛軸長為2,焦距為2
5
,則雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的虛軸長為2,焦距為2
3
,則雙曲線的漸近線方程為( 。

查看答案和解析>>

同步練習冊答案