精英家教網 > 高中數學 > 題目詳情
給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;
我們可以根據公式將函數化為:的形式;
(1)根據你的理解,試將函數化為f(x)=Asin(ωx+φ)或f(x)=Acos(ωx+φ)的形式.
(2)求出(1)中函數f(x)的最小正周期和單調減區(qū)間.
(3)求出(1)中的函數f(x)在區(qū)間上的最大值和最小值以及相應的x的值.
【答案】分析:(1)先利用兩角差的余弦函數化簡函數的表達式,仿照條件,即可推出結果.
(2)直接利用周期公式求出函數的周期,利用正弦函數的單調減區(qū)間求出所求函數的單調減區(qū)間.
(3)利用(1)的結果,根據x的范圍,求出的范圍,結合函數的單調性求出函數的最值即可.
解答:解:(1)==…(4分)
(2)最小正周期,…(5分)
減區(qū)間:,k∈Z解得,k∈Z
所以單調減區(qū)間為…(7分)
(3)∵,∴,…(9分)
時,函數有最小值
時,函數有最大值…(13分)
點評:本題考查三角函數的化簡求值,利用題設解答,注意三角函數的周期、單調性、最值的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:閱讀理解

閱讀與理解:
給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;我們可以根據公式將函數g(x)=sinx+
3
cosx化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3

(1)根據你的理解將函數f(x)=sinx+cos(x-
π
6
)化為f(x)=Asin(ωx+φ)的形式.
(2)求出上題函數f(x)的最小正周期、對稱中心及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;
我們可以根據公式將函數g(x)=sinx+
3
cosx
化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3
)
的形式;
(1)根據你的理解,試將函數f(x)=sinx+cos(x-
π
6
)
化為f(x)=Asin(ωx+φ)或f(x)=Acos(ωx+φ)的形式.
(2)求出(1)中函數f(x)的最小正周期和單調減區(qū)間.
(3)求出(1)中的函數f(x)在區(qū)間[0,
π
2
]
上的最大值和最小值以及相應的x的值.

查看答案和解析>>

科目:高中數學 來源:《第1章 三角函數》2013年單元測試卷(4)(解析版) 題型:解答題

閱讀與理解:
給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;我們可以根據公式將函數g(x)=sinx+cosx化為:g(x)=2(sinx+cosx)=2(sinxcos+cosxsin)=2sin(x+
(1)根據你的理解將函數f(x)=sinx+cos(x-)化為f(x)=Asin(ωx+φ)的形式.
(2)求出上題函數f(x)的最小正周期、對稱中心及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;
我們可以根據公式將函數g(x)=sinx+
3
cosx
化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3
)
的形式;
(1)根據你的理解,試將函數f(x)=sinx+cos(x-
π
6
)
化為f(x)=Asin(ωx+φ)或f(x)=Acos(ωx+φ)的形式.
(2)求出(1)中函數f(x)的最小正周期和單調減區(qū)間.
(3)求出(1)中的函數f(x)在區(qū)間[0,
π
2
]
上的最大值和最小值以及相應的x的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

閱讀與理
給出公式:sin(α+β)=sinαcosβ+cosαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;我們可以根據公式將函數g(x)=sinx+
3
cosx化為:g(x)=2(
1
2
sinx+
3
2
cosx)=2(sinxcos
π
3
+cosxsin
π
3
)=2sin(x+
π
3

(1)根據你的理解將函數f(x)=sinx+cos(x-
π
6
)化為f(x)=Asin(ωx+φ)的形式.
(2)求出上題函數f(x)的最小正周期、對稱中心及單調遞增區(qū)間.

查看答案和解析>>

同步練習冊答案