【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若存在滿足,證明成立.

【答案】1)當(dāng)時(shí), 上單調(diào)遞增沒有極值;當(dāng)時(shí),上單調(diào)遞增,上單調(diào)遞減,極小值為;(2)證明見解析.

【解析】

1)對(duì)函數(shù)進(jìn)行求導(dǎo)得,分為兩種情形判別導(dǎo)數(shù)與0的關(guān)系即可得結(jié)果;

2)先得出,結(jié)合(1)知,設(shè),構(gòu)造函數(shù),通過導(dǎo)數(shù)判斷出的單調(diào)性,可得出,結(jié)合(1)中的單調(diào)性即可得出結(jié)果.

1)由

當(dāng)時(shí),從而得上單調(diào)遞增沒有極值;

當(dāng)時(shí),;

;;

上單調(diào)遞增,上單調(diào)遞減,

此時(shí)有極小值,無極大值.

2)由得:,從而得

由(1)知當(dāng)時(shí),從而得上單調(diào)遞增,所以此時(shí)不成立

可知此時(shí),由于的極小值點(diǎn)為,可設(shè)

設(shè)

,僅當(dāng)時(shí)取得“

所以為單調(diào)遞增函數(shù)且

當(dāng),時(shí)有,即

又由,所以

又由(1)知上單調(diào)遞減,且

所以從而得證成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個(gè)人才識(shí)技藝過人,這里的“六藝”其實(shí)源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”. 為弘揚(yáng)中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動(dòng)中開展了“六藝”知識(shí)講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須相鄰安排的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,已知直線的參數(shù)方程為s為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,,直線與曲線C交于A,B兩點(diǎn).

(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn)P的極坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:)的離心率為,且橢圓C的中心O關(guān)于直線的對(duì)稱點(diǎn)落在直線.

1)求橢圓C的方程;

2)設(shè)P,M、N是橢圓C上關(guān)于x軸對(duì)稱的任意兩點(diǎn),連接交橢圓C于另一點(diǎn)E,求直線的斜率取值范圍,并證明直線x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中kR.

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)k∈[12]時(shí),求函數(shù)在[0,k]上的最大值的表達(dá)式,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年新型冠狀病毒疫情爆發(fā),貴州省教育廳號(hào)召全體學(xué)生“停課不停學(xué)”.自日起,高三年級(jí)學(xué)生通過收看“陽光校園·空中黔課”進(jìn)行線上網(wǎng)絡(luò)學(xué)習(xí).為了檢測線上網(wǎng)絡(luò)學(xué)習(xí)效果,某中學(xué)隨機(jī)抽取名高三年級(jí)學(xué)生做“是否準(zhǔn)時(shí)提交作業(yè)”的問卷調(diào)查,并組織了一場線上測試,調(diào)查發(fā)現(xiàn)有名學(xué)生每天準(zhǔn)時(shí)提交作業(yè),根據(jù)他們的線上測試成績得頻率分布直方圖(如圖所示);另外名學(xué)生偶爾沒有準(zhǔn)時(shí)提交作業(yè),根據(jù)他們的線上測試成績得莖葉圖(如圖所示,單位:分)

1)成績不低于分為等,低于分為非等.完成以下列聯(lián)表,并判斷是否有以上的把握認(rèn)為成績?nèi)〉?/span>等與每天準(zhǔn)時(shí)提交作業(yè)有關(guān)?

準(zhǔn)時(shí)提交作業(yè)與成績等次列聯(lián)表

單位:人

A

A

合計(jì)

每天準(zhǔn)時(shí)提交作業(yè)

偶爾沒有準(zhǔn)時(shí)提交作業(yè)

合計(jì)

2)成績低于分為不合格,從這名學(xué)生里成績不合格的學(xué)生中再抽取人,其中每天準(zhǔn)時(shí)提交作業(yè)的學(xué)生人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,點(diǎn)的極坐標(biāo)是,曲線的極坐標(biāo)方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,斜率為的直線經(jīng)過點(diǎn).

1)若時(shí),寫出直線和曲線的直角坐標(biāo)方程;

2)若直線和曲線相交于不同的兩點(diǎn),求線段的中點(diǎn)的在直角坐標(biāo)系中的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】BMI指數(shù)(身體質(zhì)量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個(gè)標(biāo)準(zhǔn),BMI=體重(kg/身高(m)的平方.根據(jù)中國肥胖問題工作組標(biāo)準(zhǔn),當(dāng)BMI28時(shí)為肥胖.某地區(qū)隨機(jī)調(diào)查了120035歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:

1)求被調(diào)查者中肥胖人群的BMI平均值;

2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認(rèn)為35歲以上成人患高血壓與肥胖有關(guān).

0.050

0.010

0.001

k

3.841

6.635

10.828

肥胖

不肥胖

合計(jì)

高血壓

非高血壓

合計(jì)

附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱角黍,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____

查看答案和解析>>

同步練習(xí)冊(cè)答案