甲、乙兩人在罰球線互不影響地投球,命中的概率分別為,投中得1分,投不中得0分.
(1)甲、乙兩人在罰球線各投球一次,求兩人得分之和的數(shù)學(xué)期望;
(2)甲、乙兩人在罰球線各投球二次,求甲恰好比乙多得分的概率.
(1)
(2)

試題分析:解:(1)依題意,記“甲投一次命中”為事件A,“乙投一次命中”為事件B,則相互獨(dú)立,且PA)=PB)=,P)=P)=.  1分
甲、乙兩人得分之和的可能取值為0、1、2,  2分


   4分
概率分布為:

0
1
2



5分
=0×+1×+2×=.  6分
答:每人在罰球線各投球一次,兩人得分之和的數(shù)學(xué)期望為.  7分
(2)設(shè)甲恰好比乙多得分為事件,甲得分且乙得分為事件,甲得分且乙得分為事件,則=+,且為互斥事件.   8分
  11分
答:甲、乙兩人在罰球線各投球二次,甲恰好比乙多得分的概率為。  12分
點(diǎn)評(píng):主要是通過實(shí)際問題來考查同學(xué)們運(yùn)用概率公式來求解事件發(fā)生的概率以及分布列的運(yùn)用,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從1,2,3,4,5中任取2個(gè)不同的數(shù),設(shè)A表示事件“取到的2個(gè)數(shù)之和為偶數(shù)”,B  表示事件“取到的2 個(gè)數(shù)均為偶數(shù)”,則P(B|A)=(    )
A.         B.            C.            D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若甲以10發(fā)6中,乙以10發(fā)5中的命中率打靶,兩人各射擊一次,則他們都中靶的概率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為了解某班學(xué)生關(guān)注NBA是否與性別有關(guān),對(duì)本班48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:
 
關(guān)注NBA
不關(guān)注NBA
合  計(jì)
男   生
 
6
 
女   生
10
 
 
合   計(jì)
 
 
48
已知在全班48人中隨機(jī)抽取1人,抽到關(guān)注NBA的學(xué)生的概率為2/3
⑴請(qǐng)將上面列連表補(bǔ)充完整,并判斷是否有的把握認(rèn)為關(guān)注NBA與性別有關(guān)?
⑵現(xiàn)從女生中抽取2人進(jìn)一步調(diào)查,設(shè)其中關(guān)注NBA的女生人數(shù)為X,求X的分布列與數(shù)學(xué)期望。
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

盒中裝有5個(gè)產(chǎn)品,其中3個(gè)一等品,2個(gè)二等品,從中不放回地取產(chǎn)品,每次1個(gè),求:
(1)取兩次,兩次都取得一等品的概率;
(2)取兩次,第二次取得一等品的概率;
(3)取三次,第三次才取得一等品的概率;
(4)取兩次,已知第二次取得一等品,求第一次取得是二等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

甲乙兩隊(duì)進(jìn)行排球比賽,已知每一局比賽中甲隊(duì)獲勝的概率是,沒有平局.采用三局兩勝制比賽,即先勝兩局者獲勝且比賽結(jié)束,則甲隊(duì)獲勝的概率等于( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

工商部門對(duì)甲、乙兩家食品加工企業(yè)的產(chǎn)品進(jìn)行深入檢查后,決定對(duì)甲企業(yè)的5種產(chǎn)品和乙企業(yè)的3種產(chǎn)品做進(jìn)一步的檢驗(yàn).檢驗(yàn)員從以上8種產(chǎn)品中每次抽取一種逐一不重復(fù)地進(jìn)行化驗(yàn)檢驗(yàn).
(1)求前3次檢驗(yàn)的產(chǎn)品中至少1種是乙企業(yè)的產(chǎn)品的概率;
(2)記檢驗(yàn)到第一種甲企業(yè)的產(chǎn)品時(shí)所檢驗(yàn)的產(chǎn)品種數(shù)共為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)生在上學(xué)路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是,遇到紅燈時(shí)停留的時(shí)間都是2 分鐘. 設(shè)這名學(xué)生在路上遇到紅燈的個(gè)數(shù)為變量、停留的總時(shí)間為變量
(1)求這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率;
(2)這名學(xué)生在上學(xué)路上遇到紅燈的個(gè)數(shù)至多是2個(gè)的概率.
(3)求的標(biāo)準(zhǔn)差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知隨機(jī)變量的分布列為(部分?jǐn)?shù)據(jù)有污損。
X
1
1.5
2
2.5
3
P




 
則X的數(shù)學(xué)期望_________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案