已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的最小值為,求的最大值;
(3)若函數(shù)的最小值為,為定義域內(nèi)的任意兩個(gè)值,試比較 與的大。
(1)當(dāng)時(shí)在定義域內(nèi)單調(diào)遞增;時(shí),函數(shù)單調(diào)遞減
(2)的最大值是
(3)
【解析】
試題分析:解: (1)顯然,且 1分
當(dāng)時(shí),,函數(shù)在定義域內(nèi)單調(diào)遞增;
當(dāng)時(shí),若,,函數(shù)單調(diào)遞減;
若,函數(shù)單調(diào)遞增 4分
(2)由(1)知,當(dāng)時(shí),函數(shù)在定義域內(nèi)單調(diào)遞增,所以無(wú)最小值.
當(dāng)時(shí),時(shí),最小,即
所以
因此,當(dāng)時(shí),,函數(shù)單調(diào)遞增;
當(dāng)時(shí),,函數(shù)單調(diào)遞減;
故的最大值是 8分
(3) 由(1)知,極小值即最小值,
故
對(duì)于任意的且有,
分
不妨設(shè),則,令則
設(shè)
所以,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013082312435223273459/SYS201308231244353266702811_DA.files/image035.png">
即,所以,即函數(shù)在上單調(diào)遞增.
從而,但是,所以
即 14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):主要是利用導(dǎo)數(shù)來(lái)研究函數(shù)單調(diào)性以及函數(shù)極值的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com