【題目】設(shè)關(guān)于的一元二次方程

(1)若是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù), 是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

(2)若時(shí)從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

【答案】(1);(2).

【解析】試題分析:由二次方程有實(shí)數(shù)根可得滿足的條件,()中由可以取得值得到所有基本事件個(gè)數(shù)及滿足條件的基本事件個(gè)數(shù),求其比值可求概率;()中由范圍得到對(duì)應(yīng)的區(qū)域,并求得滿足的區(qū)域,求其面積比可求其概率

試題解析:設(shè)事件方程有實(shí)數(shù)根

當(dāng)時(shí),因?yàn)榉匠?/span>有實(shí)數(shù)根,

)基本事件共12個(gè),如下:(0,0),(0,1),(02),(1,0),(1,1),(12),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)其中第一個(gè)數(shù)表示的取值,第二個(gè)數(shù)表示的取值,事件包含9個(gè)基本事件,事件發(fā)生的概率為

)實(shí)驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?/span>,

構(gòu)成事件的區(qū)域?yàn)?/span>

所以所求的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線與圓相切,且交橢圓, 兩點(diǎn), 是橢圓的半焦距, .

(1)求的值;

(2)為坐標(biāo)原點(diǎn),若,求橢圓的方程;

(3)在(2)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為 ,動(dòng)點(diǎn),直線, 與直線分別交于 兩點(diǎn),求線段的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校隨機(jī)抽取100名學(xué)生調(diào)查寒假期間學(xué)生平均每天的學(xué)習(xí)時(shí)間,被調(diào)查的學(xué)生每天用于學(xué)習(xí)的時(shí)間介于1小時(shí)和11小時(shí)之間,按學(xué)生的學(xué)習(xí)時(shí)間分成5組:第一組,第二組,第三組,第四組,第五組,繪制成如圖所示的頻率分布直方圖.

(1)求學(xué)習(xí)時(shí)間在的學(xué)生人數(shù);

(2)現(xiàn)要從第三組、第四組中用分層抽樣的方法抽取6人,從這6人中隨機(jī)抽取2人交流學(xué)習(xí)心得,求這2人中至少有1人學(xué)習(xí)時(shí)間在第四組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)y=x2+(a+2)x﹣3,x∈[a,b]的圖象關(guān)于直線x=1對(duì)稱.
(1)求a、b的值和函數(shù)的零點(diǎn)
(2)當(dāng)函數(shù)f(x)的定義域是[0,3]時(shí),求函數(shù)f(x)的值域..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高二年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計(jì)了他們的化學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,…,后畫出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:

(1)求出這60名學(xué)生中化學(xué)成績(jī)低于50分的人數(shù);

(2)估計(jì)高二年級(jí)這次考試化學(xué)學(xué)科及格率(60分以上為及格);

(3)從化學(xué)成績(jī)不及格的學(xué)生中隨機(jī)調(diào)查1人,求他的成績(jī)低于50分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , ,點(diǎn)上,且

(Ⅰ)已知點(diǎn)上,且,求證:平面平面;

(Ⅱ)當(dāng)二面角的余弦值為多少時(shí),直線與平面所成的角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= 的定義域是
A.{x|x≥2}
B.{x|x≤2}
C.{x|x>2}
D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)國(guó)家環(huán)保部最新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.524小時(shí)平均濃度不得超過(guò)75微克/立方米。某城市環(huán)保部分隨機(jī)抽取的一居民區(qū)過(guò)去20PM2.524小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別

PM2.5平均濃度

頻數(shù)

頻率

第一組

(0,25]

3

0.15

第二組

(25,50]

12

0.6

第三組

(50,75]

3

0.15

第四組

(75,100]

2

0.1

(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;

(II)求樣本平均數(shù),并根據(jù)樣本估計(jì)總計(jì)的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下圖中,四邊形 ABCD是等腰梯形, , O、Q分別為線段ABCD的中點(diǎn),OQEF的交點(diǎn)為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得,連結(jié)AD、BC,得一幾何體如圖所示.

(Ⅰ)證明:平面ABCD平面ABFE;

(Ⅱ)若上圖中, ,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案