(2009•臺州一模)已知z1=2+i,z2=1-3i,則復數(shù)
i+z2z1
的虛部為
-1
-1
分析:根據(jù)兩個復數(shù)代數(shù)形式的乘除法法則、虛數(shù)單位i的冪運算性質,化簡復數(shù)
i+z2
z1
 為-i,再根據(jù)虛部的定義求得它的虛部.
解答:解:∵已知z1=2+i,z2=1-3i,則復數(shù)
i+z2
z1
=
1-2i
2+i
=
(1-2i)(2-i)
(2+i)(2-i)
=
-5i
5
=-i,
故它的虛部為-1,
故答案為-1.
點評:本題主要考查復數(shù)的基本概念,兩個復數(shù)代數(shù)形式的乘除法法則的應用,虛數(shù)單位i的冪運算性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知向量
a
=(sinx,1),
b
=(t,x),若函數(shù)f(x)=
a
b
在區(qū)間[0,
π
2
]上是增函數(shù),則實數(shù)t的取值范圍是
[-1,+∞)
[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知點(3,1)和原點(0,0)在直線3x-ay+1=0的兩側,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)根據(jù)右邊程序框圖,若輸出y的值是4,則輸入的實數(shù)x=
-2或1
-2或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知點B(0,t),點C(0,t-4)(其中0<t<4),直線PB、PC都是圓M:(x-1)2+y2=1的切線.
(Ⅰ)若△PBC面積等于6,求過點P的拋物線y2=2px(p>0)的方程;
(Ⅱ)若點P在y軸右邊,求△PBC面積的最小值.

查看答案和解析>>

同步練習冊答案