規(guī)定:兩個(gè)連續(xù)函數(shù)(圖象不間斷)f(x),G(x)在閉區(qū)間[a,b]上都有意義,我們稱函數(shù)|f(x)-G(x)|在[a,b]上的最大值叫做函數(shù)f(x)與G(x)在[a,b]上的“絕對(duì)差”.

(1)試求函數(shù)f(x)=x2G(x)=x(x-2)(x-4)在閉區(qū)間[-3,3]上的“絕對(duì)差”;

(2)設(shè)函數(shù)f(x)=x2及函數(shù)hm(x)=(a+b)x+m都定義在已知區(qū)間[a,b]上,記f(x)與hm(x)的“絕對(duì)差”為D(m).若D(m)的最小值是D(m0),則稱f(x)可用hm0(x)“替代”,試求m0的值,使f(x)可用hm0(x)“替代”.

解:(1)記F(x)=f(x)-g(x),?

F′(x)=f′(x)-g′(x)=-3x2-2x+8.?

F′(x)=0,得x=-2或x=.                                                                               ?

F(-2)=-12,F()=,F(3)=-12,F(-3)=-6.                                                     ?

∴-12≤F(x)≤.?

故所求“絕對(duì)差”為12.                                                                                      ?

(2)由于f(x)-hM(x)=x2-[(a+b)x+M],f′(x)-hM′(x)=2x-(a+b),?

從而令f′(x)-hM′(x)=0,得x=.                                                                     ?

D(M)=Max{|f()-hM()|,|f(a)-hM(a)|,|f(b)-hM(b)|}?

=Max{|M+|,|M+AB|}.                                                                                 ?

由于|M+|2-|M+AB|2= (M+),?

D(M)=                                                      ?

∴當(dāng)M=M0=-時(shí),D(M0)最小.?

故當(dāng)M0=-(a2+6AB+b2)時(shí),f(x)可用h(x)“替代”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案