已知函數(shù)f(x)=lnx與g(x)=kx+b(k,b∈R)的圖象交于P,Q兩點,曲線y=f(x)在P,Q兩點處的切線交于點A.
(Ⅰ)當k=e,b=-3時,求f(x)-g(x)的最大值;(e為自然常數(shù))
(Ⅱ)若A(,),求實數(shù)k,b的值.
【答案】分析:(Ⅰ)構(gòu)建新函數(shù),求導函數(shù),利用導數(shù)確定函數(shù)的單調(diào)性,從而可求函數(shù)的最大值;
(Ⅱ)先求出切線方程,代入A的坐標,進而求出P,Q的坐標,即可求實數(shù)k,b的值.
解答:解:(Ⅰ)設(shè)h(x)=f(x)-g(x)=lnx-ex+3(x>0),
,----(1分)
時,h′(x)>0,此時函數(shù)h(x)為增函數(shù);
時,h′(x)<0,此時函數(shù)h(x)為減函數(shù).
所以函數(shù)h(x)的增區(qū)間為,減區(qū)間為
時,f(x)-g(x)的最大值為;----(4分)
(Ⅱ)設(shè)過點A的直線l與函數(shù)f(x)=lnx切于點(x,lnx),則其斜率
故切線,
將點代入直線l方程得:
,----(7分)
設(shè),則,
時,v′(x)<0,函數(shù)v(x)為增函數(shù);
時,v′(x)>0,函數(shù)v(x)為減函數(shù).
故方程v(x)=0至多有兩個實根,----(10分)
又v(1)=v(e)=0,所以方程v(x)=0的兩個實根為1和e,
故P(1,0),Q(e,1),
所以為所求.----(12分)
點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查導數(shù)的幾何意義,解題的關(guān)鍵是構(gòu)建函數(shù),正確運用導數(shù)知識.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案