【題目】古希臘數(shù)學(xué)家阿波羅尼斯在其巨著《圓錐曲線論》中提出在同一平面上給出三點(diǎn),若其中一點(diǎn)到另外兩點(diǎn)的距離之比是一個(gè)大于零且不等于1的常數(shù),則該點(diǎn)軌跡是一個(gè)圓現(xiàn)在,某電信公司要在甲、乙、丙三地搭建三座5G信號(hào)塔來構(gòu)建一個(gè)三角形信號(hào)覆蓋區(qū)域,以實(shí)現(xiàn)5G商用,已知甲、乙兩地相距4公里,丙、甲兩地距離是丙、乙兩地距離的倍,則這個(gè)三角形信號(hào)覆蓋區(qū)域的最大面積(單位:平方公里)是(

A.B.C.D.

【答案】B

【解析】

建立平面直角坐標(biāo)系,利用兩點(diǎn)間的距離公式列方程,化簡后求得丙地的軌跡方程,由此根據(jù)三角形的面積公式,求得三角形信號(hào)覆蓋面積的最大值.

由題意不妨設(shè)甲、乙兩地坐標(biāo)為,丙地坐標(biāo)為,則,整理得,半徑,所以最大面積為.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,底面ABC,M BC的中點(diǎn),若底面ABC是邊長為2的正三角形,且PB與底面ABC所成的角為. 求:

(1)三棱錐的體積;

(2)異面直線PMAC所成角的大小. (結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥平面ACDDE⊥平面ACD,△ACD為等邊三角形,ADDE2AB,FCD的中點(diǎn).

1)求證:AF∥平面BCE;

2)求證:平面BCE⊥平面CDE;

3)求直線BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

)求數(shù)列的通項(xiàng)公式;

)令.求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),a為常數(shù).

1)討論函數(shù)的單調(diào)性:

2)若函數(shù)有兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為.

(1)求的方程;

(2)如圖,經(jīng)過橢圓左頂點(diǎn)且斜率為的直線交于兩點(diǎn),交軸于點(diǎn),點(diǎn)為線段的中點(diǎn),若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,過點(diǎn)為坐標(biāo)原點(diǎn))垂直的直線交直線于點(diǎn),且面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,,直角梯形可以通過直角梯形以直線為軸旋轉(zhuǎn)得到,且平面平面.

1)求證:;

2)設(shè)、分別為的中點(diǎn),為線段上的點(diǎn)(不與點(diǎn)重合).

i)若平面平面,求的長;

ii)線段上是否存在,使得直線平面,若存在求的長,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中函數(shù),.

1)求函數(shù)在點(diǎn)處的切線方程;

2)當(dāng)時(shí),求函數(shù)上的最大值;

3)當(dāng)時(shí),對(duì)于給定的正整數(shù),問:函數(shù)是否有零點(diǎn)?請說明理由.(參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)討論的單調(diào)性;

2)當(dāng)時(shí),證明:;

3)求證:對(duì)任意正整數(shù),都有(其中,為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊答案