【題目】如圖C,D是以AB為直徑的圓上的兩點(diǎn),,,F是AB上的一點(diǎn),且,面ABD,.
(1)求證:平面;
(2)求證:平面;
(3)求三棱錐的體積.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)由圓的性質(zhì)知,由線面垂直性質(zhì)知;根據(jù)線面垂直的判定定理可證得結(jié)論;
(2)根據(jù)圓的性質(zhì)知,由勾股定理可求得;由線面垂直性質(zhì)知,由勾股定理求得,從而可得到,證得;根據(jù)線面平行判定定理證得結(jié)論;
(3)根據(jù)比例關(guān)系可知,由線面垂直知為點(diǎn)到平面的距離;由體積橋可知,利用三棱錐體積公式求得結(jié)果.
(1)在以為直徑的圓上
平面,平面
平面, 平面
(2)在以為直徑的圓上 ,又,
平面,平面 ,又
在中,
平面,平面 平面
(3)
平面 到平面距離為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 如圖是正方體的平面展開圖.在這個(gè)正方體中,
①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.
以上四個(gè)命題中,正確命題的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求,的值;
(2)當(dāng)時(shí),在區(qū)間上至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)上點(diǎn)M(3,m)到焦點(diǎn)F的距離為4.
(Ⅰ)求拋物線方程;
(Ⅱ)點(diǎn)P為準(zhǔn)線上任意一點(diǎn),AB為拋物線上過焦點(diǎn)的任意一條弦,設(shè)直線PA,PB,PF的斜率為k1,k2,k3,問是否存在實(shí)數(shù)λ,使得k1+k2=λk3恒成立.若存在,請(qǐng)求出λ的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,側(cè)面是矩形,,,,且.
(1)求證:平面平面;
(2)設(shè)是的中點(diǎn),判斷并證明在線段上是否存在點(diǎn),使平面,若存在,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若數(shù)列,求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com