【題目】如圖,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長為3的正方形,側(cè)棱AA1長為4,且AA1與A1B1 , A1D1的夾角都是60°,則AC1的長等于( )
A.10
B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)和g(x),如果對于任意x∈[a,b]均有|f(x)﹣g(x)|≤1成立,則稱函數(shù)f(x)和g(x)在區(qū)間[a,b]上是接近的.若f(x)=log2(ax+1)與g(x)=log2x在區(qū)[1,2]上是接近的,則實數(shù)a的取值范圍是( )
A.[0,1]
B.[2,3]
C.[0,2)
D.(1,4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本、搭載費用之和(萬元) | 20 | 30 | 計劃最大資金額300萬元 |
產(chǎn)品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預計收益(萬元) | 80 | 60 |
試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點O為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線L:y=kx+m與橢圓C相交于A、B兩點,且kOAkOB=﹣ ,求證:△AOB的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(Ⅰ)求 被選中的概率;
(Ⅱ)求 和 不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)單調(diào)遞增的函數(shù)是( )
A.y=﹣x2
B.y=2﹣|x|
C.y=| |
D.y=lg|x|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題P:將函數(shù)sin2x的圖象向右平移 個單位得到函數(shù)y=sin(2x﹣ )的圖象;命題Q:函數(shù)y=sin(x+ )cos( ﹣x)的最小正周期是π,則復合命題“P或Q”“P且Q”“非P”為真命題的個數(shù)是個.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運輸收入均為25萬元.小王在該車運輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25-x萬元(國家規(guī)定大貨車的報廢年限為10年).
(1)大貨車運輸?shù)降趲啄昴甑,該車運輸累計收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在處有極值10.
(Ⅰ)求實數(shù), 的值;
(Ⅱ)設(shè)時,討論函數(shù)在區(qū)間上的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com