【題目】為建設(shè)美麗鄉(xiāng)村,政府欲將一塊長12百米,寬5百米的矩形空地ABCD建成生態(tài)休閑園,園區(qū)內(nèi)有一景觀湖EFG(圖中陰影部分),以AB所在直線為x軸,AB的垂直平分線為y軸,建立平面直角坐標系xOy(如圖所示).景觀湖的邊界線符合函數(shù)y=x+ (x>0)模型,園區(qū)服務(wù)中心P在x軸正半軸上,PO= 百米.
(1)若在點O和景觀湖邊界曲線上一點M之間修建一條休閑長廊OM,求OM的最短長度;
(2)若在線段DE上設(shè)置一園區(qū)出口Q,試確定Q的位置,使通道PQ最短.
【答案】
(1)解:設(shè)M(x,x+ ),則|OM|2=x2+(x+ )2=2x2+ +2≥2 +2,
當且僅當2x2= 即x2= 時取等號,
∴|OM|的最短距離為
(2)解:過P作函數(shù)y=x+ 的切線l,設(shè)切線l的方程為y=k(x﹣ )(k<0),
聯(lián)立方程組 ,得(1﹣k)x2+ x+1=0,
令△= k2﹣4(1﹣k)=0得k=﹣3或k= (舍),
∴直線l的方程為y=﹣3(x﹣ ),
令y=5得x=﹣ ,
∴DQ=6﹣ = .
∴當|DQ|= 時,通道PQ最短
【解析】(1)設(shè)M(x,x+ ),利用距離公式得出|OM|2關(guān)于x的函數(shù),利用基本不等式求出最小值即可;(2)當直線PQ與湖邊界相切時,通道最短,設(shè)出切線方程,與邊界函數(shù)聯(lián)立,令△=0即可得出切線方程,從而確定Q點的位置.
科目:高中數(shù)學 來源: 題型:
【題目】一個多面體的直觀圖、正視圖、側(cè)視圖、俯視圖如圖,M,N分別為A1B,B1C1的中點.
下列結(jié)論中正確的個數(shù)有 ( )
①直線MN與A1C相交.
②MN⊥BC.
③MN∥平面ACC1A1.
④三棱錐N-A1BC的體積為=a3.
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一座橋的截面圖,橋的路面由三段曲線構(gòu)成,曲線AB和曲線DE分別是頂點在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們在接點B、D處的切線相同,若橋的最高點C到水平面的距離H=6米,圓弧的弓高h=1米,圓弧所對的弦長BD=10米.
(1)求弧 所在圓的半徑;
(2)求橋底AE的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓M:與軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長;
(3)若點是直線上的動點,過點作直線與圓M相切,為切點,求四邊形面積的最小值.
【答案】(1) (2) (3)
【解析】試題分析:(1)先將圓的一般方程化成標準方程,利用直線和圓相切進行求解;(2) 令,得到關(guān)于的一元二次方程進行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點到直線的的距離進行求解.
試題解析:(1) ∵圓M:與軸相切
∴ ∴
(2) 令,則 ∴
∴
(3)
∵的最小值等于點到直線的距離,
∴ ∴
∴四邊形面積的最小值為.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標系中,圓的方程為,且圓與軸交于, 兩點,設(shè)直線的方程為.
(1)當直線與圓相切時,求直線的方程;
(2)已知直線與圓相交于, 兩點.
(。┤,求實數(shù)的取值范圍;
(ⅱ)直線與直線相交于點,直線,直線,直線的斜率分別為, , ,
是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量m (sin ,1), =(1, cos ),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)若f(α﹣ )= ,求f(2α+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 經(jīng)過點 ,其離心率 .
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)動直線 與橢圓 相切,切點為 ,且 與直線 相交于點 .
試問:在 軸上是否存在一定點,使得以 為直徑的圓恒過該定點?若存在,
求出該點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣alnx+x(a∈R)
(Ⅰ)當a=1時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(Ⅱ)討論函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com