已知等比數(shù)列{an}中,a3=3,a6=24,則該數(shù)列的通項an=
3•2n-3
3•2n-3
分析:根據(jù)條件等比數(shù)列{an}中,a3=3,a6=24求出公比q然后利用等比數(shù)列的通項公式即可求出an
解答:解:∵等比數(shù)列{an}中,a3=3,a6=24
∴q3=
a6
a3
=8
∴q=2
∴an=a3qn-3=3•2n-3
故答案為:3•2n-3
點評:本題主要考查了等比數(shù)列的通項公式的求解.解題的關鍵是利用a3=3,a6=24求出公比q同時要熟記利用等比數(shù)列的通項公式an=amqn-m
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

5、已知等比數(shù)列{an}的前n項和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項,第3項,第2項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2an,求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習冊答案