定義在R上的函數(shù)f(x)滿(mǎn)足f(x)=-f(x+2),且當(dāng)x∈(-1,1]時(shí),f(x)=x2+2x.

(1)求當(dāng)x∈(3,5]時(shí),f(x)的解析式;

(2)判斷f(x)在(3,5]上的增減性并證明.

(1)解析:∵f(x+4)=f(x+2+2)=-f(x+2)=f(x),

∴f(x)是以4為周期的周期函數(shù).

設(shè)x∈(3,5],則-1<x-4≤1,

∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8(3<x≤5).

(2)證明:∵f(x)=(x-3)2-1(3<x≤5),

∴函數(shù)f(x)在(3,5)上是增函數(shù).

用定義:設(shè)3<x1<x2≤5,則f(x2)-f(x1)=x22-6x2+8-x12+6x1-8=(x2-x1)(x2+x1)-6(x2-x1)=(x2-x1)

(x1+x2-6),

∵x1<x2,

∴x2-x1>0,x1+x2-6>3+3-6=0.

∴f(x2)>f(x1),∴f(x)為增函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿(mǎn)足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對(duì)稱(chēng)中心都在f(x)圖象的對(duì)稱(chēng)軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對(duì)應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案