已知直線的方程為,求滿足下列條件的直線的方程:
(1)與平行且過點(diǎn);(2)與垂直且過點(diǎn);
(1):;(2):
【解析】
試題分析:(1)兩直線平行則斜率相等,可設(shè)的方程為:,再將點(diǎn)代入的方程得C即可;也可由點(diǎn)斜式方程寫出的方程;
(2)兩直線垂直則斜率乘積為-1,可設(shè):,再將點(diǎn)代入的方程得m即可;也可由點(diǎn)斜式方程寫出的方程.
試題解析:(1)由 與平行,則可設(shè)的方程為:
過點(diǎn) ∴
解得:C=13 ∴: (6分)
(2)由 與垂直,則可設(shè):,
∵過,∴
解得:m=-9,∴: (12分)
考點(diǎn):本題考查直線的方程,兩條直線的位置關(guān)系:兩直線平行則斜率相等;兩直線垂直則斜率乘積為-1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2016屆貴州省黔東南州高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量(單位:微克)與時間(單位:小時)之間近似滿足如圖所示的曲線.
(Ⅰ)寫出第一次服藥后與之間的函數(shù)關(guān)系式;
(Ⅱ)據(jù)進(jìn)一步測定:每毫升血液中含藥量不少于微克時,治療有效.問:服藥多少小時開始有治療效果?治療效果能持續(xù)多少小時?(精確到0.1)(參考數(shù)據(jù):).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆福建省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
右圖是函數(shù)的圖像,它與x軸有4個不同的公共點(diǎn).給出下列四個區(qū)間,不能用二分法求出函數(shù)在區(qū)間( )上的零點(diǎn).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆福建省寧德市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù),用二分法求方程的近似根過程中,計算得到,則方程的根落在區(qū)間
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆福建省高一上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系xOy中,已知圓:和圓:
(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長為2,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆福建省高一上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題
若圓上有且只有兩個點(diǎn)到直線的距離為1,則半徑的取值范圍( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆福建省高一上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆福建三明A片區(qū)高中聯(lián)盟校高一上期末數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)。若,則的值( )
A.一定是 B.一定是
C.是中較大的數(shù) D.是中較小的數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016屆甘肅天水一中高一上學(xué)期必修一第一學(xué)段考試數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)僅有一個負(fù)零點(diǎn),則m的取值范圍為( 。
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com