【題目】已知函數(shù).

1)求的單調區(qū)間與極值;

2)當函數(shù)有兩個極值點時,求實數(shù)a的取值范圍.

【答案】1)減區(qū)間,增區(qū)間 ,極小值為,無極大值;(2.

【解析】

1)求出函數(shù)的導函數(shù),根據(jù)導函數(shù)即可求出單調區(qū)間以及極值;

2)求出的導函數(shù),使導函數(shù)有兩個根,采用分離參數(shù)法,結合(1)中的值域即可求出參數(shù)的取值范圍.

解:(1)由,

,

,則

,即,解得,

所以函數(shù)的單調遞增區(qū)間為

,即,解得,

所以函數(shù)的單調遞減區(qū)間為;

因為函數(shù)上單調遞減,在上單調遞增,

所以函數(shù)在處取得極小值,極小值,無極大值.

綜上所述,單調遞增區(qū)間為;單調遞減區(qū)間為極小值為2,無極大值;

2)由,

,

有兩個極值點,則有兩個根

有兩解,即,

有兩個交點,

由(1)可知上單調遞減;在上單調遞增,

,所以

考慮函數(shù),,

由洛必達法則:,

,,

所以若有兩個交點,則

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統(tǒng)計,得到下表:

考試情況

男學員

女學員

第1次考科目二人數(shù)

1200

800

第1次通過科目二人數(shù)

960

600

第1次未通過科目二人數(shù)

240

200

若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.

(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;

(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產(chǎn)生的補考費用之和為元,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】法國數(shù)學家布豐提出一種計算圓周率的方法——隨機投針法,受其啟發(fā),我們設計如下實驗來估計的值:先請200名同學每人隨機寫下一個橫、縱坐標都小于1的正實數(shù)對;再統(tǒng)計兩數(shù)的平方和小于1的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)來估計的值.已知某同學一次試驗統(tǒng)計出,則其試驗估計______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點為,過(M不過橢圓的頂點和中心)且斜率為k直線l交橢圓于兩點,與y軸交于點N,且.

(1)若直線l過點,求的周長;

(2)若直線l過點,求線段的中點R的軌跡方程;

(3)求證:為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】業(yè)界稱中國芯迎來發(fā)展和投資元年,某芯片企業(yè)準備研發(fā)一款產(chǎn)品,研發(fā)啟動時投入資金為AA為常數(shù))元,之后每年會投入一筆研發(fā)資金,n年后總投入資金記為,經(jīng)計算發(fā)現(xiàn)當時,近似地滿足,其中為常數(shù),.已知3年后總投入資金為研發(fā)啟動是投入資金的3倍,問:

1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的8倍;

2)研發(fā)啟動后第幾年投入的資金最多?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線lax+ y1=0xy軸的交點分別為A,B,直線l與圓Ox2+y2=1的交點為C,D,給出下面三個結論:①a≥1,SAOB=;②a≥1,|AB||CD|;③a≥1,SCOD.其中,所有正確結論的序號是(  )

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P到圓(x+22+y2=1的切線長與到y軸的距離之比為tt0,t≠1);

1)求動點P的軌跡C的方程;

2)當時,將軌跡C的圖形沿著x軸向左移動1個單位,得到曲線G,過曲線G上一點Q作兩條漸近線的垂線,垂足分別是P1P2,求的值;

3)設曲線C的兩焦點為F1,F2,求t的取值范圍,使得曲線C上不存在點Q,使∠F1QF2=θ0θπ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花圃為提高某品種花苗質量,開展技術創(chuàng)新活動,在,實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在,試驗地隨機抽選各株,對每株進行綜合評分(評分的高低反映花苗品質的高低),將每株所得的綜合評分制成如圖所示的頻率分布直方圖:

1)求圖中的值,并求綜合評分的中位數(shù);

2)記綜合評分為及以上的花苗為優(yōu)質花苗.填寫下面的列聯(lián)表,并判斷是否有的把握認為優(yōu)質花苗與培育方法有關.

優(yōu)質花苗

非優(yōu)質花苗

合計

甲培育法

乙培育法

合計

附:下面的臨界值表僅供參考.

(參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車里程的等級,下表是對100輛新車模型在一個耗油單位內行車里程(單位:公里)的測試結果.

分組

頻數(shù)

6

10

20

30

18

12

4

1)做出上述測試結果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;

2)用分層抽樣的方法從行車里程在區(qū)間的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車里程在內的概率.

查看答案和解析>>

同步練習冊答案