已知函數(shù),,且在點
處的切線方程為.
(1)求的值;
(2)若函數(shù)在區(qū)間內(nèi)有且僅有一個極值點,求的取值范圍;
(3)設(shè)為兩曲線,的交點,且兩曲線在交點處的切線分別為.若取,試判斷當(dāng)直線與軸圍成等腰三角形時值的個數(shù)并說明理由.
(1) ;(2) ;(3)2個
解析試題分析:(1)由函數(shù),在點處的切線方程為.所以對函數(shù)求導(dǎo),根據(jù)斜率為1以及過點(1,0)兩個條件即可求出結(jié)論.
(2)由函數(shù),對函數(shù)求導(dǎo),并令可解得兩個根,由于函數(shù)在區(qū)間內(nèi)有且僅有一個極值點,的根在內(nèi)有且僅有一個根.所以通過分類討論即可求的取值范圍.
(3)兩曲線在交點處的切線分別為.若取,當(dāng)直線與軸圍成等腰三角形時.通過求導(dǎo)求出兩函數(shù)的切線的斜率,即可得到這兩斜率不可能是相等,所以依題意可得到兩切線傾斜角有兩倍的關(guān)系,再通過解方程和函數(shù)的單調(diào)性的判斷即可得到結(jié)論.
(1),∴,又,
∴. 3分
(2);
∴
由得,
∴或. 5分
∵,當(dāng)且僅當(dāng)或時,函數(shù)在區(qū)間內(nèi)有且僅有一個極值點. 6分
若,即,當(dāng)時;當(dāng)時,函數(shù)有極大值點,
若,即時,當(dāng)時;當(dāng)時,函數(shù)有極大值點,
綜上,的取值范圍是. 8分
(3)當(dāng)時,設(shè)兩切線的傾斜角分別為,
則,
∵, ∴均為銳角, 9分
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若曲線在點處與直線相切,求a,b的值;
(2)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中.
(1)是否存在實數(shù),使得函數(shù)在上單調(diào)遞增?若存在,求出的值或取值范圍;否則,請說明理由.
(2)若a<0,且函數(shù)y=f(x)的極小值為,求函數(shù)的極大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B、C是直線l上不同的三點,O是l外一點,向量滿足:記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若對任意不等式恒成立,求實數(shù)a的取值范圍:
(3)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中為的導(dǎo)函數(shù).證明:對任意.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性,并說明理由;
(2)若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在時取得極小值.
(1)求實數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出,的值;
若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com