已知點(diǎn)A、B分別是橢圓=1(a>b>0)長(zhǎng)軸的左、右端點(diǎn),點(diǎn)C是橢圓短軸的一個(gè)端點(diǎn),且離心率e=,S△ABC=
      (1)求橢圓方程;
      (2)設(shè)直線l經(jīng)過橢圓的右焦點(diǎn),且與橢圓相交于P、Q兩點(diǎn),求線段PQ的中點(diǎn)到原點(diǎn)的距離等于時(shí)的直線方程.
      【答案】分析:(1)利用橢圓的離心率e=,S△ABC=,建立方程組,求出幾何量,即可得出橢圓的方程;
      (2)分類討論,直線方程與橢圓方程聯(lián)立,利用OP⊥OQ,結(jié)合韋達(dá)定理,即可得到結(jié)論.
      解答:解:(1)∵橢圓的離心率e=,S△ABC=


      ∴所求橢圓的方程為
      (2)當(dāng)直線l的斜率不存在時(shí),l的方程為x=,代入橢圓方程,可得,∴|PQ|=
      而線段PQ的中點(diǎn)到原點(diǎn)的距離等于,不合題意;
      當(dāng)直線l的斜率存在時(shí),l的方程為y=k(x-),則OP⊥OQ
      直線方程與橢圓方程聯(lián)立,可得(1+3k2)x2-x+6k2-3=0.
      設(shè)P(x1,y1)、Q(x2,y2),則x1+x2=,x1x2=
      ∴x1x2+y1y2==0
      ∴k=
      ∴直線l的方程為y=(x-)或y=-(x-).
      點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查分類討論的數(shù)學(xué)思想,屬于中檔題.
      練習(xí)冊(cè)系列答案
      相關(guān)習(xí)題

      科目:高中數(shù)學(xué) 來源: 題型:

      (2013•懷化三模)已知橢圓C:
      x2
      a2
      +
      y2
      b2
      =1(a>b>0)
      過點(diǎn)(
      3
      ,
      3
      2
      )
      ,離心率e=
      1
      2
      ,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
      x0
      a
      y0
      b
      )
      稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
      (1)求橢圓C的方程;
      (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源:懷化三模 題型:解答題

      已知橢圓C:
      x2
      a2
      +
      y2
      b2
      =1(a>b>0)
      過點(diǎn)(
      3
      ,
      3
      2
      )
      ,離心率e=
      1
      2
      ,若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
      x0
      a
      ,
      y0
      b
      )
      稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
      (1)求橢圓C的方程;
      (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源:2013年湖南省懷化市高考數(shù)學(xué)三模試卷(文科)(解析版) 題型:解答題

      已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
      (1)求橢圓C的方程;
      (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

      已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
      (1)求橢圓C的方程;
      (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

      查看答案和解析>>

      科目:高中數(shù)學(xué) 來源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

      已知橢圓過點(diǎn),離心率,若點(diǎn)M(x,y)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l交橢圓C于A、B兩點(diǎn),若點(diǎn)A、B的“橢點(diǎn)”分別是P、Q,且以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O.
      (1)求橢圓C的方程;
      (2)若橢圓C的右頂點(diǎn)為D,上頂點(diǎn)為E,試探究△OAB的面積與△ODE的面積的大小關(guān)系,并證明.

      查看答案和解析>>

      同步練習(xí)冊(cè)答案