【題目】在△ABC中,角A,B,C所對的邊分別是a,b,c,且 + = .
(1)證明:sinAsinB=sinC;
(2)若b2+c2﹣a2= bc,求tanB.
【答案】
(1)
證明:在△ABC中,∵ + = .
∴由正弦定理得: ,
∴ = ,
∵sin(A+B)=sinC.
∴整理可得:sinAsinB=sinC
(2)
解:b2+c2﹣a2= bc,由余弦定理可得cosA= .
sinA= , =
=1, = ,
tanB=4.
【解析】(1)將已知等式通分后利用兩角和的正弦函數(shù)公式整理,利用正弦定理,即可證明.
(2)由余弦定理求出A的余弦函數(shù)值,利用(1)的條件,求解B的正切函數(shù)值即可.
本題主要考查了正弦定理,余弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,三角形面積公式的應用,考查了轉化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)若f(2)=a,求a的值;
(2)當a=2時,若對任意互不相等的實數(shù)x1,x2∈(m,m+4),都有>0成立,求實數(shù)m的取值范圍;
(3)判斷函數(shù)g(x)=f(x)-x-2a(<a<0)在R上的零點的個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓M:x2+y2+ay=0(a>0),直線l:x-7y-2=0,且直線l與圓M相交于不同的兩點A,B.
(1)若a=4,求弦AB的長;
(2)設直線OA,OB的斜率分別為k1,k2,若k1+k2=,求圓M的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,已知曲線C1:(α為參數(shù)),在以O為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρcos =-,曲線C3:ρ=2sin θ.
(1)求曲線C1與C2的交點M的直角坐標;
(2)設點A,B分別為曲線C2,C3上的動點,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的部分圖像如圖所示,為最高點,該圖像與軸交于點與軸交于點,且的面積為.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖像向右平移個單位,再將所得圖像上各點的橫坐標伸長為原來的倍,縱坐標不變,得到函數(shù)的圖像,求在上的單調(diào)遞增區(qū)間。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=.
(Ⅰ)若f(x)是奇函數(shù),求實數(shù)a的值;
(Ⅱ)當0<x≤1時,|f(2x)-f(x)|≥1恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
試根據(jù)求出的線性回歸方程,預測記憶力為9的同學的判斷力.
相關公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機擲兩枚質地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com