分析 由條件利用正弦函數(shù)的圖象和性質(zhì),誘導(dǎo)公式,得出結(jié)論.
解答 解:關(guān)于函數(shù)$f(x)=4sin(2x+\frac{π}{3}),(x∈R)$,f(x)的表達(dá)式可改寫(xiě)為f(x)=4cos[$\frac{π}{2}$-(2x+$\frac{π}{3}$)]=4cos($\frac{π}{6}$-2x)=4cos(2x-$\frac{π}{6}$),故①正確.
由于當(dāng)x=-$\frac{π}{6}$時(shí),f(x)=0,可得f(x)的圖象關(guān)于點(diǎn)$(-\frac{π}{6},0)$對(duì)稱,故②正確.
當(dāng)x=$\frac{π}{3}$時(shí),求得f(x)=0,不是最值,可得f(x)的圖象不關(guān)于直線$x=\frac{π}{3}$對(duì)稱,故排除③.
在區(qū)間(-$\frac{π}{3}$,$\frac{π}{12}$)上,2x+$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{π}{2}$),函數(shù)f(x)為增函數(shù),故排除D,
故答案為:①②.
點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象和性質(zhì),誘導(dǎo)公式,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
月份x | 1 | 2 | 3 | 4 |
用水量y | 4.5 | 4 | 3 | 2.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com