5.sin$\frac{π}{12}$cos$\frac{π}{12}$=$\frac{1}{4}$.

分析 由已知利用二倍角的正弦函數(shù)公式及特殊角的三角函數(shù)值即可計(jì)算得解.

解答 解:sin$\frac{π}{12}$cos$\frac{π}{12}$=$\frac{1}{2}×$(2sin$\frac{π}{12}$cos$\frac{π}{12}$)=$\frac{1}{2}$sin$\frac{π}{6}$=$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題主要考查了二倍角的正弦函數(shù)公式及特殊角的三角函數(shù)值在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=x2-6x+8,x∈[1,a],并且f(x)的最大值為f(a),那么實(shí)數(shù)a的取值范圍是[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知-1<a<4,1<b<2,則a-b的取值范圍是( 。
A.(-2,3)B.(-2,2)C.(-3,2)D.(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13..已知:$\overrightarrow{n}$和$\overrightarrow{m}$是兩個(gè)單位向量,其夾角是60°,設(shè)向量$\overrightarrow{a}$=2$\overrightarrow{m}$+$\overrightarrow{n}$、b=2$\overrightarrow{n}$-3$\overrightarrow{m}$.
(1)求|$\overrightarrow{a}$|,|$\overrightarrow$|.
(2)求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.?dāng)?shù)列4,1,-2,-5,…的第10項(xiàng)是( 。
A.-20B.-21C.-22D.-23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.化簡求值:
(1)tan20°+tan40°+$\sqrt{3}$tan20°tan40°;
(2)sin50°(1+$\sqrt{3}$tan10°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知非零向量$\overrightarrow{a}$、$\overrightarrow$,且$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{BC}$=-5$\overrightarrow{a}$+6$\overrightarrow$,$\overrightarrow{CD}$=7$\overrightarrow{a}$-2$\overrightarrow$,則一定共線的三點(diǎn)是(  )
A.A、B、DB.A、B、CC.B、C、DD.A、C、D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=$\sqrt{3}$sin2x+cos2x的最小正周期和振幅分別是( 。
A.π,1B.π,2C.2π,1D.4π,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知p:-2≤x≤10;q:1-m≤x≤1+m(m>0).若¬p是¬q的必要不充分條件,則實(shí)數(shù)m的取值范圍是[9,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案