若條件p:
1
a+1
>1,條件q:a<0
,則p是q的( 。
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件
分析:先解出條件p,然后看命題p與命題q,是否能互推,然后根據(jù)必要條件、充分條件和充要條件的定義進(jìn)行判斷.
解答:解:∵條件p,
1
a+1
>1,
a
a+1
>0,
解得a>0,或a<-1,
∵條件q:a<0,
∴條件p?條件q,反之則不能,
∴p是q的充分不必要條件,
故選B.
點評:此題主要考查必要條件、充分條件和充要條件的定義,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法正確的是
 
 (把你認(rèn)為正確說法的序號都填上).
①命題“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x、
②將函數(shù)y=sin(2x+
π
6
)
的圖象向左平移
π
6
個單位,得到函數(shù)y=-cos2x的圖象;
③若“?p”與“p∨q”都為真,則q-定為真;
④“0<a<1”是“loga(a+1)<loga(
1
a
+1)
”的充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標(biāo)為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.
(3)對于給定的實數(shù)a(a>1)是否存在這樣的數(shù)列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若條件p:
1
a+1
>1,條件q:a<0
,則p是q的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列四種說法正確的是______ (把你認(rèn)為正確說法的序號都填上).
①命題“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x、
②將函數(shù)y=sin(2x+
π
6
)
的圖象向左平移
π
6
個單位,得到函數(shù)y=-cos2x的圖象;
③若“?p”與“p∨q”都為真,則q-定為真;
④“0<a<1”是“loga(a+1)<loga(
1
a
+1)
”的充分條件.

查看答案和解析>>

同步練習(xí)冊答案