(1+2x)2(1-x)5=a0+a1x+a2x2+…+a7x7,則a1-a2+a3-a4+a5-a6+a7等于(    )

A.32                B.-32              C.-33               D.-31

解析:用賦值法.

答案:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1+2x)2(1+x)5=a0+a1x+a2x+a2x2+…+a7x7,則a1+a2+a3+a4+a5+a6+a7=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=lg(ax2-2x+2).
(1)若函數(shù)y=lg(ax2-2x+2)的值域為R,求實數(shù)a的取值范圍;
(2)若a=1且x≤1,求y=lg(ax2-2x+2)的反函數(shù)f-1(x);
(3)若方程lg(ax2-2x+2)=1在[
12
,2]
內(nèi)有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)對于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(diǎn)(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點(diǎn)P1為直線l:2x-y+2=0與x軸的交點(diǎn),點(diǎn)Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請問,是否存在一個定義域為R的函數(shù)y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)一模)我們規(guī)定:對于任意實數(shù)A,若存在數(shù)列{an}和實數(shù)x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,則稱數(shù)A可以表示成x進(jìn)制形式,簡記為:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,則表示A是一個2進(jìn)制形式的數(shù),且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),試將m表示成x進(jìn)制的簡記形式.
(2)若數(shù)列{an}滿足a1=2,ak+1=
1
1-ak
,k∈N*
,bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求證:bn=
2
7
8n-
2
7

(3)若常數(shù)t滿足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)二模)一位同學(xué)對三元一次方程組
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
(其中實系數(shù)ai,bi,ci(i=1,2,3)不全為零)的解的情況進(jìn)行研究后得到下列結(jié)論:
結(jié)論1:當(dāng)D=0,且Dx=Dy=Dz=0時,方程組有無窮多解;
結(jié)論2:當(dāng)D=0,且Dx,Dy,Dz都不為零時,方程組有無窮多解;
結(jié)論3:當(dāng)D=0,且Dx=Dy=Dz=0時,方程組無解.
但是上述結(jié)論均不正確.下面給出的方程組可以作為結(jié)論1、2和3的反例依次為(  )
(1)
x+2y+3z=0
x+2y+3z=1
x+2y+3z=2
;  (2)
x+2y=0
x+2y+z=0
2x+4y=0
;  (3)
2x+y=1
-x+2y+z=0
x+3y+z=2

查看答案和解析>>

同步練習(xí)冊答案