已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的值域.
(1);(2)[1,2]
解析試題分析:(1)用輔助角公式將化成一個角的三角函數(shù),再利用周期公式即可求得的周期;(2)由求出內(nèi)函數(shù)的值域,作為函數(shù)的定義域,集合正弦函數(shù)的圖象與性質(zhì),求出的值域,再利用不等式性質(zhì),即可求出的值域.
試題解析:(1)由條件可得, 4分
所以該函數(shù)的最小正周期 6分
(2),, 8分
當(dāng)時,函數(shù)取得最大值為,當(dāng)時,函數(shù)取得最小值為1
函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/7/dbp3d1.png" style="vertical-align:middle;" /> 14分
考點(diǎn):三角變換;周期公式;三角函數(shù)圖像與性質(zhì);復(fù)合函數(shù)值域求法;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像關(guān)于直線對稱,且圖像上相鄰兩個最高點(diǎn)的距離為.
(1)求和的值;
(2)若,求的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,求的值域;
(2)當(dāng),時,函數(shù)的圖象關(guān)于對稱,求函數(shù)的對稱軸;
(3)若圖象上有一個最低點(diǎn),如果圖象上每點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮短到原來的倍,然后向左平移1個單位可得的圖象,又知的所有正根從小到大依次為,,…,…且,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)把的解析式Acos()+B的形式,并用五點(diǎn)法作出在一個周期上的簡圖;(要求列表)
(2)說出的圖像經(jīng)過怎樣的變換的圖像.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=.
(1)求φ;
(2)求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某實(shí)驗(yàn)室一天的溫度(單位:)隨時間(單位:)的變化近似滿足函數(shù)關(guān)系;
.
(1)求實(shí)驗(yàn)室這一天的最大溫差;
(2)若要求實(shí)驗(yàn)室溫度不高于11,則在哪段時間實(shí)驗(yàn)室需要降溫?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com