已知橢圓C:(a>b>0),點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),點(diǎn)P(2,)在直線(xiàn)x=上,且|F1F2|=|PF2|,直線(xiàn):y=kx+m為動(dòng)直線(xiàn),且直線(xiàn)與橢圓C交于不同的兩點(diǎn)A、B。

(Ⅰ)求橢圓C的方程;

(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿(mǎn)足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍;

(Ⅲ)在(Ⅱ)的條件下,當(dāng)取何值時(shí),△ABO的面積最大,并求出這個(gè)最大值.

解:橢圓的左、右焦點(diǎn)分別為、 ,  

,  ,       

解得,                   

橢圓的方程為 .          

   (Ⅱ)由,得

設(shè)點(diǎn)、的坐標(biāo)分別為、,則

   (1)當(dāng)時(shí),點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),則

   (2)當(dāng)時(shí),點(diǎn)、不關(guān)于原點(diǎn)對(duì)稱(chēng),則,

,得       即

點(diǎn)在橢圓上,

化簡(jiǎn),得

.………………①       

,

,得.……………………………②    

將①、②兩式,得

,,則

綜合(1)、(2)兩種情況,得實(shí)數(shù)的取值范圍是

(Ⅲ),點(diǎn)到直線(xiàn)的距離,

的面積

                . 

由①有,代入上式并化簡(jiǎn),得

,.            

當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.

當(dāng)時(shí),的面積最大,最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:=1(a>b>0),直線(xiàn)l1:=1被橢圓C截得的弦長(zhǎng)為2,過(guò)橢圓C的右焦點(diǎn)且斜率為3的直線(xiàn)l2被橢圓C截得的弦長(zhǎng)是橢圓長(zhǎng)軸長(zhǎng)的,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線(xiàn)y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線(xiàn)相交于A,B兩點(diǎn),連接AF,BF.|AB|=10,|BF|=8,cosABF=,C的離心率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省高三8月第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分14分)

已知橢圓C:(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為3.

(1)求橢圓C的方程;

(2)過(guò)橢圓C上的動(dòng)點(diǎn)P引圓O:x2+y2=b2的兩條切線(xiàn)PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線(xiàn)互相垂直?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分12分)

已知橢圓C:(a>b>0)的離心率為短軸一個(gè)端點(diǎn)到右焦點(diǎn)的

距離為.

(Ⅰ)求橢圓C的方程;    

(Ⅱ)設(shè)直線(xiàn)l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為,求△AOB面積的

最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案