設(shè)集合X是實(shí)數(shù)集R的子集,如果點(diǎn)x0∈R滿足:對(duì)任意a>0,都存在x∈X,使得0<|x-x0|<a,稱x0為集合X的聚點(diǎn).用Z表示整數(shù)集,則在下列集合中:
{
n
n+1
|n∈Z,n≥0}
;  ②{x|x∈R,x≠0};③{
1
n
|n∈Z,n≠0}
;   ④整數(shù)集Z
以0為聚點(diǎn)的集合有( 。
分析:由已知中關(guān)于集合聚點(diǎn)的定義,我們逐一分析四個(gè)集合中元素的性質(zhì),并判斷是否滿足集合聚點(diǎn)的定義,進(jìn)而得到答案.
解答:解:①中,集合{
n
n+1
|n∈Z,n≥0}
中的元素是極限為1的數(shù)列,
除了第一項(xiàng)0之外,其余的都至少比0大
1
2
,
∴在a<
1
2
的時(shí)候,不存在滿足得0<|x|<a的x,
∴0不是集合{
n
n+1
|n∈Z,n≥0}
的聚點(diǎn)
②集合{x|x∈R,x≠0},對(duì)任意的a,都存在x=
a
2
(實(shí)際上任意比a小得數(shù)都可以),使得0<|x|=
a
2
<a
∴0是集合{x|x∈R,x≠0}的聚點(diǎn)
③集合{
1
n
|n∈Z,n≠0}
中的元素是極限為0的數(shù)列,
對(duì)于任意的a>0,存在n>
1
a
,使0<|x|=
1
n
<a
∴0是集合{
1
n
|n∈Z,n≠0}
的聚點(diǎn)
④對(duì)于某個(gè)a<1,比如a=0.5,此時(shí)對(duì)任意的x∈Z,都有|x-0|=0或者|x-0|≥1,也就是說(shuō)不可能0<|x-0|<0.5,從而0不是整數(shù)集Z的聚點(diǎn)
故選A
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是集合元素的性質(zhì),其中正確理解新定義--集合的聚點(diǎn)的含義,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)集合X是實(shí)數(shù)集R的子集,如果點(diǎn)x0∈R滿足:對(duì)任意a>0,都存在x∈X,使得0<|x-x0|<a,稱x0為集合X的聚點(diǎn).用Z表示整數(shù)集,則在下列集合中:
{
n
n+1
|n∈Z,n≥0}
;  ②{x|x∈R,x≠0};③{
1
n
|n∈Z,n≠0}
;   ④整數(shù)集Z
以0為聚點(diǎn)的集合有( 。
A.②③B.①④C.①③D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市人大附中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:選擇題

設(shè)集合X是實(shí)數(shù)集R的子集,如果點(diǎn)x∈R滿足:對(duì)任意a>0,都存在x∈X,使得0<|x-x|<a,稱x為集合X的聚點(diǎn).用Z表示整數(shù)集,則在下列集合中:
;  ②{x|x∈R,x≠0};③;   ④整數(shù)集Z
以0為聚點(diǎn)的集合有( )
A.②③
B.①④
C.①③
D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年北京大學(xué)附中高三適應(yīng)性訓(xùn)練數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)集合X是實(shí)數(shù)集R的子集,如果點(diǎn)x∈R滿足:對(duì)任意a>0,都存在x∈X,使得0<|x-x|<a,稱x為集合X的聚點(diǎn).用Z表示整數(shù)集,則在下列集合中:
;  ②{x|x∈R,x≠0};③;   ④整數(shù)集Z
以0為聚點(diǎn)的集合有( )
A.②③
B.①④
C.①③
D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年北京大學(xué)附中高三適應(yīng)性訓(xùn)練數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)集合X是實(shí)數(shù)集R的子集,如果點(diǎn)x∈R滿足:對(duì)任意a>0,都存在x∈X,使得0<|x-x|<a,稱x為集合X的聚點(diǎn).用Z表示整數(shù)集,則在下列集合中:
;  ②{x|x∈R,x≠0};③;   ④整數(shù)集Z
以0為聚點(diǎn)的集合有( )
A.②③
B.①④
C.①③
D.①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案