(滿分13分)已知,若在區(qū)間上的最小值為,求的值。
 或  
:(1)當(dāng)時(shí),,從而在區(qū)間上遞減,
∴最小值為 ∴ (舍去)(3分)
(2)當(dāng) 時(shí),對(duì)稱軸為,且圖象開口朝上,由于
在區(qū)間上遞減  ∴最小值為,
    ∴,都不符合題意        (8分)
(3)當(dāng)時(shí),圖象對(duì)稱軸為,且圖象開口朝下,由于 故在區(qū)間上遞減∴最小值為 ,
 ∴ (舍去)綜合知: 或  (13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a、b、c是實(shí)數(shù),函數(shù),當(dāng)時(shí),
(1)證明:;
(2)證明:當(dāng)時(shí),;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)
的大小關(guān)系為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-1的圖象的頂點(diǎn)為A.二次函數(shù)y=ax2+bx的圖象與x軸交于原點(diǎn)O及另一點(diǎn)C,它的頂點(diǎn)B在函數(shù)y=x2-2x-1的圖象的對(duì)稱軸上.
(1)求點(diǎn)A與點(diǎn)C的坐標(biāo);
(2)當(dāng)四邊形AOBC為菱形時(shí),求函數(shù)y=ax2+bx的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
2
x2-mlnx+(m-1)x
,m∈R.
(1)當(dāng)m=2時(shí),求函數(shù)f(x)的最小值;
(2)當(dāng)m≤0時(shí),討論函數(shù)f(x)的單調(diào)性;
(3)求證:當(dāng)m=-2時(shí),對(duì)任意的x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)m>0,n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

當(dāng)時(shí),函數(shù)取得最小值. 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)為偶函數(shù),則的值是(   )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案