(本小題滿分12分)
如圖,臺(tái)風(fēng)中心從A地以每小時(shí)20千米的速度向東北方向(北偏東)移動(dòng),離臺(tái)風(fēng)中心不超過(guò)300千米的地區(qū)為危險(xiǎn)區(qū)域.城市B在A地的正東400千米處.請(qǐng)建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,解決以下問題:

(1) 求臺(tái)風(fēng)移動(dòng)路徑所在的直線方程;
(2)求城市B處于危險(xiǎn)區(qū)域的時(shí)間是多少小時(shí)?

.解:
法一、
(1)以B為原點(diǎn),正東方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/d/fgpde.gif" style="vertical-align:middle;" />軸建立如圖所示的直角坐標(biāo)系,
則臺(tái)風(fēng)中心A的坐標(biāo)是(-400,0),臺(tái)風(fēng)移動(dòng)路徑所在的直線方程為
(2)以B為圓心,300千米為半徑作圓,和直線相交于、兩點(diǎn).可以認(rèn)為,臺(tái)風(fēng)中心移到時(shí),城市B開始受臺(tái)風(fēng)影響(危險(xiǎn)區(qū)),直到時(shí),解除影響.
因?yàn)辄c(diǎn)B到直線的距離,
所以,
(小時(shí)).所以B城市處于危險(xiǎn)區(qū)內(nèi)的時(shí)間是10小時(shí).           
法二、以A為原點(diǎn),正東方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5b/d/fgpde.gif" style="vertical-align:middle;" />軸建立直角坐標(biāo)系,
則臺(tái)風(fēng)移動(dòng)路徑所在的直線方程為,以B為圓心,300千米為半徑作圓,
則圓方程為,以下思路類似法一.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案