【題目】已知曲線C:x2-y2=1及直線l:y=kx-1.
(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;
(2)若l與C交于A,B兩點,O為坐標原點,且△AOB的面積為,求實數(shù)k的值.
【答案】(1)(-,-1)∪(-1,1)∪(1,)(2)k=0或k=±.
【解析】
(1)由消去y,得(1-k2)x2+2kx-2=0.再解不等式組即得解.(2)先寫出韋達定理,再求出S△OAB=S△OAD+S△OBD=|x1|+|x2|=|x1-x2|=,再把韋達定理代入即得實數(shù)k的值.
(1)由消去y,得(1-k2)x2+2kx-2=0.
由得k的取值范圍是(-,-1)∪(-1,1)∪(1,).
(2)設點A(x1,y1),B(x2,y2).
由(1),得x1+x2=-,x1x2=-.
又∵l過點D(0,-1),
∴S△OAB=S△OAD+S△OBD=|x1|+|x2|=|x1-x2|=,
∴(x1-x2)2=(2)2,即,
解得k=0或k=±.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,是棱上的一點.
(1)證明:平面;
(2)若平面,求的值;
(3)在(2)的條件下,三棱錐的體積是18,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關,現(xiàn)收集了6組觀測數(shù)據(jù)如下表:
溫度 | 21 | 24 | 25 | 27 | 29 | 32 |
產(chǎn)卵數(shù)/個 | 7 | 11 | 21 | 24 | 66 | 115 |
1.946 | 2.398 | 3.045 | 3.178 | 4.191 | 4.745 |
(I)以溫度為23、25、27、29的數(shù)據(jù)分別建立:①和之間線性回歸方程,②和之間線性回歸方程;
(Ⅱ)若以(Ⅰ)所得回歸方程預測,得到溫度為21、32的數(shù)據(jù)如下:
溫度 | 21 | 32 |
-11.5 | 80.94 | |
1.825 | 4.857 |
試以上表數(shù)據(jù)說明①②兩個模型,哪個擬合的效果更好.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有、、、四位貴賓,應分別對應坐在、、、四個席位上,現(xiàn)在這四人均未留意,在四個席位上隨便就座.
(1)求這四人恰好都坐在自己席位上的概率;
(2)求這四人恰好都沒坐在自己席位上的概率;
(3)求這四人恰好有位坐在自己席位上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人玩錘子、剪刀、布的猜拳游戲,假設兩人都隨機出拳,求:
(1)平局的概率;
(2)甲贏的概率;
(3)甲不輸?shù)母怕?/span>.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面是追蹤調查200個某種電子元件壽命(單位:)頻率分布直方圖,如圖:
其中300-400、400-500兩組數(shù)據(jù)丟失,下面四個說法中有且只有一個與原數(shù)據(jù)相符,這個說法是( )
①壽命在300-400的頻數(shù)是90;
②壽命在400-500的矩形的面積是0.2;
③用頻率分布直方圖估計電子元件的平均壽命為:
④壽命超過的頻率為0.3
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省級示范高中高三年級對考試的評價指標中,有“難度系數(shù)”“區(qū)分度”和“綜合”三個指標,其中,難度系數(shù),區(qū)分度,綜合指標.以下是高三年級 6 次考試的統(tǒng)計數(shù)據(jù):
i | 1 | 2 | 3 | 4 | 5 | 6 |
難度系數(shù) xi | 0.66 | 0.72 | 0.73 | 0.77 | 0.78 | 0.84 |
區(qū)分度 yi | 0.19 | 0.24 | 0.23 | 0.23 | 0.21 | 0.16 |
(I) 計算相關系數(shù),若,則認為與的相關性強;通過計算相關系數(shù) ,能否認為與的相關性很強(結果保留兩位小數(shù))?
(II) 根據(jù)經(jīng)驗,當時,區(qū)分度與難度系數(shù)的相關性較強,從以上數(shù)據(jù)中剔除(0.7,0.8)以外的 值,即.
(i) 寫出剩下 4 組數(shù)據(jù)的線性回歸方程(保留兩位小數(shù));
(ii) 假設當時, 與的關系依從(i)中的回歸方程,當 為何值時,綜合指標的值最大?
參考數(shù)據(jù):
參考公式:
相關系數(shù)
回歸方程中斜率和截距的最小二乘估計公式為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了反映國民經(jīng)濟各行業(yè)對倉儲物流業(yè)務的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.
根據(jù)該折線圖,下列結論正確的是
A. 2016年各月的倉儲指數(shù)最大值是在3月份
B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大
D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務活動仍然較為活躍,經(jīng)濟運行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知y=f(x)是定義在(-∞,+∞)上的奇函數(shù),且在[0,+∞)上為增函數(shù),
(1)求證:函數(shù)在(-∞,0)上也是增函數(shù);
(2)如果f()=1,解不等式-1<f(2x+1)≤0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com