【題目】對(duì)于數(shù)列, , , ,若滿足,則稱數(shù)列為“數(shù)列”.
若存在一個(gè)正整數(shù),若數(shù)列中存在連續(xù)的項(xiàng)和該數(shù)列中另一個(gè)連續(xù)的項(xiàng)恰好按次序?qū)?yīng)相等,則稱數(shù)列是“階可重復(fù)數(shù)列”,
例如數(shù)列因?yàn)?/span>, , , 與, , , 按次序?qū)?yīng)相等,所以數(shù)列是“階可重復(fù)數(shù)列”.
(I)分別判斷下列數(shù)列, , , , , , , , , .是否是“階可重復(fù)數(shù)列”?如果是,請(qǐng)寫出重復(fù)的這項(xiàng);
(II)若項(xiàng)數(shù)為的數(shù)列一定是 “階可重復(fù)數(shù)列”,則的最小值是多少?說明理由;
(III)假設(shè)數(shù)列不是“階可重復(fù)數(shù)列”,若在其最后一項(xiàng)后再添加一項(xiàng)或,均可 使新數(shù)列是“階可重復(fù)數(shù)列”,且,求數(shù)列的最后一項(xiàng)的值.
【答案】(I);(Ⅱ) 的最小值是;(III).
【解析】試題分析:(I)根據(jù)條件及給出的新定義判斷;(II)結(jié)合所給出的新定義,分類討論可得結(jié)果;(III)用反證法進(jìn)行推理,可得而。
試題解析:
(I)
(Ⅱ)因?yàn)閿?shù)列的每一項(xiàng)只可以是或,所以連續(xù)項(xiàng)共有種不同的情形.
若,則數(shù)列中有組連續(xù)項(xiàng),則這其中至少有兩組按次序?qū)?yīng)相等,即項(xiàng)數(shù)為的數(shù)列一定是“階可重復(fù)數(shù)列”;
若,數(shù)列, , , , , , , , , 不是“階可重復(fù)數(shù)列”;則時(shí),均存在不是“階可重復(fù)數(shù)列”的數(shù)列.
所以要使數(shù)列一定是“階可重復(fù)數(shù)列”,則的最小值是.
(III)由于數(shù)列在其最后一項(xiàng)后再添加一項(xiàng)或,均可使新數(shù)列是“階可重復(fù)數(shù)列”,即在數(shù)列的末項(xiàng)后再添加一項(xiàng)或,
則存在,使得, , , , 與, , , , 按次序?qū)?yīng)相等,或, , , , 與, , , , 按次序?qū)?yīng)相等,如果, , , 與, , , 不能按次序?qū)?yīng)相等,
那么必有, , ,使得, , , 、, , , 與, , , 按次序?qū)?yīng)相等.
此時(shí)考慮, 和,其中必有兩個(gè)相同,這就導(dǎo)致數(shù)列中有兩個(gè)連續(xù)的五項(xiàng)恰按次序?qū)?yīng)相等,從而數(shù)列是“階可重復(fù)數(shù)列”,這和題設(shè)中數(shù)列不是“階可重復(fù)數(shù)列”矛盾!
所以, , , 與, , , 按次序?qū)?yīng)相等,從而.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù)且,求的
最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a∈R,則“關(guān)于x的方程x2+ax+1=0無實(shí)根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第四象限”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若將函數(shù)y=cos 2x的圖象向左平移 個(gè)單位長度,則平移后圖象的對(duì)稱軸為( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P是邊長為2的正三角形ABC邊BC上的動(dòng)點(diǎn),則 的值( )
A.是定值6
B.最大值為8
C.最小值為2
D.與P點(diǎn)位置有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為常數(shù),函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2)( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com