【題目】已知函數(shù)的定義域為[-1,5],部分對應(yīng)值如下表, 的導函數(shù)的圖象如圖所示,下列關(guān)于的命題:

-1

0

4

5

1

2

2

1

①函數(shù)的極大值點為0,4;

②函數(shù)在[0,2]上是減函數(shù);

③如果當時, 的最大值是2,那么t的最大值為4;

④當1<a<2時,函數(shù)有4個零點.

其中正確命題的序號是__________

【答案】①②

【解析】試題分析: 由函數(shù)的導函數(shù)的圖像知,函數(shù)的極大值點為, ,所以正確;

因為在上的導函數(shù)為負,所以函數(shù)上是減函數(shù),所以正確;

由表中數(shù)據(jù)可得當時,函數(shù)取最大值2,若時,函數(shù)的最大值是2,那么,故的最大值為5,即錯誤;

知,因為極小值未知,所以無法判斷函數(shù)有幾個零點,故不正確.

綜上所述,正確命題的個數(shù)為2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若不等式(a﹣2)x2+2(a﹣2)x﹣4<0對一切x∈R恒成立,則實數(shù)a取值的集合(
A.{a|a≤2}
B.{a|﹣2<a<2}
C.{a|﹣2<a≤2}
D.{a|a≤﹣2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)= ,存在一個正數(shù)b,使得f(x)的定義域和值域相同,則非零實數(shù)a的值為(
A.2
B.﹣2
C.﹣4
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1),g(x)=loga ,(a>0且a≠1).記F(x)=2f(x)+g(x).
(1)求函數(shù)F(x)的零點;
(2)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學生物興趣小組在學校生物園地種植了一批名貴樹苗,為了了解樹苗生長情況,從這批樹苗中隨機地測量了其中50棵樹苗的高度(單位:厘米).把這些高度列成了如下的頻率分布表:

(1)在這批樹苗中任取一棵,其高度不低于80厘米的概率大約是多少?

(2)這批樹苗的平均高度大約是多少?(用各組的中間值代替各組數(shù)據(jù)的平均值)

(3)為了進一步獲得研究資料,若從組中移出一棵樹苗,從組中移出兩棵樹苗進行試驗研究,則組中的樹苗組中的樹苗同時被移出的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y2=8x與雙曲線C2 (a>0,b>0)有公共焦點F2 , 點A是曲線C1 , C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以雙曲線C2的另一焦點F1為圓心的圓M與直線y= 相切,圓N:(x﹣2)2+y2=1.過點P(1, )作互相垂直且分別與圓M、圓N相交的直線l1和l2 , 設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,問: 是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出場單價就降低0.02元,根據(jù)市場調(diào)查,銷售商一次訂購量不會超過600件.
(1)設(shè)一次訂購x件,服裝的實際出廠單價為p元,寫出函數(shù)p=f(x)的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題R,p:x∈R使 ,命題q:x∈R都有x2+x+1>0,給出下列結(jié)論:
①命題“p∧q”是真命題
②命題“命題“p∨q”是假命題
③命題“p∨q”是真命題
④命題“p∨q”是假命題
其中正確的是( )
A.②④
B.②③
C.③④
D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的是(
A.
B.y=x2
C.y=﹣x|x|
D.y=x2

查看答案和解析>>

同步練習冊答案