20.函數(shù)f(x)=ln$\frac{x({e}^{x}-{e}^{-x})}{2}$,則f(x)是( 。
A.奇函數(shù),且在(0,+∞)上單調(diào)遞減B.奇函數(shù),且在(0,+∞)上單凋遞增
C.偶函數(shù),且在(0,+∞)上單調(diào)遞減D.偶函數(shù),且在(0,+∞)上單凋遞增

分析 根據(jù)函數(shù)的奇偶性的定義以及復(fù)合函數(shù)的單調(diào)性判斷即可.

解答 解:由x(ex-e-x)>0,得f(x)的定義域是(-∞,0)∪(0,+∞),
而f(-x)=ln$\frac{-x{(e}^{-x}{-e}^{x})}{2}$=ln$\frac{x{(e}^{x}{-e}^{-x})}{2}$=f(x),
∴f(x)是偶函數(shù),
x>0時,y=x(ex-e-x)遞增,
故f(x)在(0,+∞)遞增,
故選:D.

點評 本題考查了函數(shù)的奇偶性以及函數(shù)的單調(diào)性問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知cos($\frac{π}{12}$-θ)=$\frac{1}{3}$,則sin($\frac{5π}{12}+θ$)的值是( 。
A.$\frac{1}{3}$B.$\frac{2\sqrt{2}}{3}$C.-$\frac{1}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求($\frac{x}{2}$+$\frac{2}{\sqrt{x}}$)9的展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在鈍角△ABC中,角A,B,C的對邊分別為a,b,c,若a=$\sqrt{3}$,A=$\frac{π}{3}$,則b的取值范圍為( 。
A.(0,1)B.($\sqrt{3}$,2)C.(0,1)∪($\sqrt{3}$,2)D.(0,1)∪(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|log2x<2},B={y|y=3x+2,x∈R},則A∩B=(  )
A.(1,4)B.(2,4)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前n項和Sn=kn-1(k∈R),且{an}既不是等差數(shù)列,也不是等比數(shù)列,則k的值是0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(0)=$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)$f(x)=asinx-\sqrt{3}cosx$關(guān)于直線$x=-\frac{π}{6}$對稱,且f(x1)•f(x2)=-4,則|x1+x2|的最小值為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.交換積分次序∫${\;}_{1}^{3}$dx∫${\;}_{1}^{x}$f(x,y)dy=${∫}_{1}^{3}d{y∫}_{y}^{3}f(x,y)dx$.

查看答案和解析>>

同步練習(xí)冊答案