已知集合A={x|x2-2x-3>0},B={x|x2-6x+5≤0},則A∩B等于( 。
分析:先根據(jù)一元二次不等式的解法求出集合A,B,然后根據(jù)交集的定義求出A∩B即可.
解答:解:集合A={x|x2-2x-3>0}={x|x<-1或x>3},集合B={x|x2-6x+5≤0}={x|1≤x≤5},
則A∩B={x|x<-1或x>3}∩{x|1≤x≤5}={x|3<x≤5}.
故選A.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查集合的基本運(yùn)算,不等式的解法,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知集合A={x|x>1},集合B={x|x-4≤0},則A∪B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<1},B={x|x(x-2)≤0},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<-2或3<x≤4},B={x||x-1|≤4}
求:
(1)CRA;
(2)A∪B;
(3)若C={x|x>a},且B∩C=B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x≥1},B={x|x>2},則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•德陽三模)已知集合A={x|
x-2
x+1
≤0},B={y|y=cosx,x∈R}
.則A∩B為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案