分析 由拋物線方程求出焦點(diǎn)坐標(biāo),即要求圓的圓心坐標(biāo),再由垂徑定理求得半徑,則圓的方程可求.
解答 解:由y2=8x,得2p=8,p=4,
∴拋物線y2=8x的焦點(diǎn)坐標(biāo)為F(2,0),
如圖,設(shè)拋物線的準(zhǔn)線交x軸于D,
由題意可知,DB=3,又DF=4,
∴r2=BF2=25.
則所求圓的標(biāo)準(zhǔn)方程為(x-2)2+y2=25,
故答案為(x-2)2+y2=25.
點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,考查了拋物線的簡(jiǎn)單性質(zhì),考查數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}π$ | B. | $\frac{{\sqrt{3}}}{2}π$ | C. | $\sqrt{3}π$ | D. | $2\sqrt{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 12 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x2-x>0 | B. | $?{x_0}∈R,{x_0}^2-{x_0}≤0$ | ||
C. | ?x∈R,x2-x≤0 | D. | $?{x_0}∈R,{x_0}^2-{x_0}<0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 3 | C. | 2 | D. | -1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com