已知橢圓 的右焦點為,設(shè)短軸的一個端點為,原點到直線的距離為,過原點和軸不重合的直線與橢圓相交于兩點,且.

(1) 求橢圓的方程;

(2) 是否存在過點的直線與橢圓相交于不同的兩點且使得成立?若存在,試求出直線的方程;若不存在,請說明理由.

 

 

【答案】

解析:(1)由………………………….1分

又原點到直線的距離為,………….2分

故橢圓方程為……………………. …………4分

(2)顯然當(dāng)直線軸垂直時不可能滿足條件……. …………5分

故可設(shè)存在滿足條件的直線的方程為,帶入橢圓的方程得

因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為

………………. …………7分

因為,即

所以

所以

解得………………. …………10分

因為為不同的兩點,所以

所以………………. …………11分

所以存在滿足條件的直線,且其方程為

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的右焦點為F,右準(zhǔn)線為l,A、B是橢圓上兩點,且|AF|:|BF|=3:2,直線AB與l交于點C,則B分有向線段
AC
所成的比為( 。
A、
1
2
B、2
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川成都外國語學(xué)校高三下二月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的右焦點為F21,0),點 在橢圓上.

1)求橢圓方程;

2)點在圓上,M在第一象限,過M作圓的切線交橢圓于PQ兩點,問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南省昆明市高三復(fù)習(xí)適應(yīng)性檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點

(Ⅰ)求的值;

(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省高三12月質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:填空題

已知橢圓的右焦點為,點在橢圓上,以點為圓心的圓與軸相切,且同時與軸相切于橢圓的右焦點,則橢圓的離心率為         

 

查看答案和解析>>

同步練習(xí)冊答案